Use this URL to cite or link to this record in EThOS:
Title: Single photon generation and quantum computing with integrated photonics
Author: Spring, Justin Benjamin
ISNI:       0000 0004 5356 7844
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Restricted access.
Access from Institution:
Photonics has consistently played an important role in the investigation of quantum-enhanced technologies and the corresponding study of fundamental quantum phenomena. The majority of these experiments have relied on the free space propagation of light between bulk optical components. This relatively simple and flexible approach often provides the fastest route to small proof-of-principle demonstrations. Unfortunately, such experiments occupy significant space, are not inherently phase stable, and can exhibit significant scattering loss which severely limits their use. Integrated photonics offers a scalable route to building larger quantum states of light by surmounting these barriers. In the first half of this thesis, we describe the operation of on-chip heralded sources of single photons. Loss plays a critical role in determining whether many quantum technologies have any hope of outperforming their classical analogues. Minimizing loss leads us to choose Spontaneous Four-Wave Mixing (SFWM) in a silica waveguide for our source design; silica exhibits extremely low scattering loss and emission can be efficiently coupled to the silica chips and fibers that are widely used in quantum optics experiments. We show there is a straightforward route to maximizing heralded photon purity by minimizing the spectral correlations between emitted photon pairs. Fabrication of identical sources on a large scale is demonstrated by a series of high-visibility interference experiments. This architecture offers a promising route to the construction of nonclassical states of higher photon number by operating many on-chip SFWM sources in parallel. In the second half, we detail one of the first proof-of-principle demonstrations of a new intermediate model of quantum computation called boson sampling. While likely less powerful than a universal quantum computer, boson sampling machines appear significantly easier to build and may allow the first convincing demonstration of a quantum-enhanced computation in the not-distant future. Boson sampling requires a large interferometric network which are challenging to build with bulk optics, we therefore perform our experiment on-chip. We model the effect of loss on our postselected experiment and implement a circuit characterization technique that accounts for this loss. Experimental imperfections, including higher-order emission from our photon pair sources and photon distinguishability, are modeled and found to explain the sampling error observed in our experiment.
Supervisor: Walmsley, Ian A. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Atomic and laser physics ; Physics and CS ; Quantum information processing ; integrated optics ; quantum optics ; quantum computing ; heralded single photon source ; boson sampling