Use this URL to cite or link to this record in EThOS:
Title: LRL genes are ancient regulators of tip-growing rooting cell development in land plants
Author: Tam, Ho Yuen
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Restricted access.
Access from Institution:
Evolution of developmental genes is an important mechanism for plant morphological evolution. The LRL genes are an ancient group of bHLH transcription factors that positively regulate root hair development in angiosperms. Here I show that, in the moss Physcomitrella patens, two LRL genes are present and they positively regulate rhizoid and caulonema (a rhizoid-like cell type) development. GUS-transcriptional reporter plants show that both PpLRL1 and PpLRL2 are expressed in tissues giving rise to caulonemata. Loss-of-function mutants in either PpLRL1 or PpLRL2 led to defective rhizoid and caulonema development, and the Pplrl1 Pplrl2 double loss-of-function mutants completely lack rhizoids and caulonemata. Consistent with this, gain-of-function mutants show enhanced rhizoid and caulonema development. In addition, I show that the stimulatory effects of auxin and low phosphate on the development of rhizoids and/or caulonemata required PpLRL gene function. Together, these results show that LRL genes are conserved, positive regulators in tip-growing rooting cell development in land plants. To elucidate whether LRL genes belong to part of a conserved gene network, I use qRT-PCR to determine the transcriptional interaction between LRL genes and the Class I RSL genes, which is another group of conserved regulators of rhizoids and root hairs. Comparing the LRL-RSL network between P. patens and A. thaliana reveals that LRL and Class I RSL genes are transcriptionally independent of each other in P. patens but one LRL gene is transcriptionally downstream of Class I RSL genes in A. thaliana. This suggests that the gene network controlling tip-growing rooting cell development has changed since mosses and angiosperms last shared a common ancestor.
Supervisor: Dolan, Liam; Harberd, Nicholas P. Sponsor: Clarendon Fund ; Overseas Research Students Award Scheme
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Comparative developmental genetics (plants) ; LRL genes ; evo-devo ; roots ; rhizoids ; auxin