Use this URL to cite or link to this record in EThOS:
Title: A longitudinal cohort study examining the relationship between working memory and UK primary school curricular mathematics
Author: Pennington, Glenda
Awarding Body: Liverpool John Moores University
Current Institution: Liverpool John Moores University
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Access from Institution:
Mathematics is an important skill that is taught to all children in the UK in a structured manner from a very early age. The purpose of this thesis was to examine how working memory (Baddeley & Hitch, 1974a; Baddeley & Hitch, 1994) and UK curricular mathematics are related, if specific components of working memory were more impactful upon performance in mathematics than others, and if we can predict mathematics outcomes using working memory measures. With reference to the influence of working memory on overall curricular mathematics performance, a cohort of 70 children from two primary schools in the North West of England was tested annually from their Reception year (mean age 5yrs 1m) at school to Year Two (mean age 6yrs 11m ). The study used a number of working memory tasks, a UK curricular mathematics test, and two Performance Measures. This allowed data to be analysed both in a cross-sectional manner and longitudinally (Chapter 5).The thesis also differentiates UK curricular mathematics into four separable “strands”, Number, Calculation, Measures, Shape and Space, and Problem Solving. These strands are described consistently throughout the UK mathematics curricular literature (DfEE, 1999; DfEE & QCA, 1999a; DfES, 2003a) and the cohort data was used to statistically analyse the relationships between working memory and each strand in turn using a correlational design in Chapters 6 to 9.Results indicated that working memory is a robust predictor of overall mathematics performance (Chapter 5), and of the Calculation Strand (Chapter 7). This finding was demonstrated in both the cross-sectional analyses and also in the longitudinal regression analyses. Of the working memory measures a distinct pattern of association was revealed. In particular the data imply that there is a strong role for the central executive at each age range, but in Year One verbal short-term memory emerges as an important predictor variable. Working memory also showed significant predictive influence over the remaining three curricular mathematics strands that were measured, particularly at the youngest age grouping, but working memory was not found to be a robust longitudinal predictor of Number, Problem Solving or Measures, Shape and Space. The overarching conclusion is that working memory, and in particular the central executive, may support the development of early curricular mathematical skills independent of the influence of age and Performance Measures. The practical and theoretical implications are considered.
Supervisor: Willis, Catherine; Tattersall, Andy Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
Keywords: working memory, verbal short-term memory, nonverbal short-term memory, central executive, complex working memory, mathematics, primary curriculum, numeracy, calculation, problem solving, maths, cognitive, development,