Use this URL to cite or link to this record in EThOS:
Title: Regulation of the Bloom's syndrome protein
Author: North, Phillip
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2012
Availability of Full Text:
Full text unavailable from EThOS.
Please contact the current institution’s library for further details.
In response to DNA damage, the ATM and ATR kinases proliferate a signal that is transduced, either directly or via Chk2 and Chk1, to effector proteins, forming the DNA damage response (DDR). The effector proteins delay cell cycle progression, through checkpoints, and activate specific DNA repair mechanisms essential for preserving genome integrity and preventing cancer formation. Bloom's syndrome (BS) patients, which lack the BLM protein show genome instability and have a predisposition to cancer. BLM is phosphorylated by the DDR kinases ATM, ATR and Chk1. These phosphorylation events are essential for BLM to maintain replication fork integrity, preserve the S phase checkpoint and activate BLM to interact with other DDR proteins. In this study I have shown that BLM, isolated from mitotic cells, is phosphorylated on amino acid residue serine 26 (S26). BS cells lacking native BLM, but expressing a variant of BLM protein that cannot be phosphorylated at S26, fail to fully activate the G2/M checkpoint following UV irradiation or treatment with inhibitors of DNA topoisomerase H. Consequently, these cells are more sensitive to killing by these agents than are BS cells expressing wildtype BLM. The Chk1 and Aurora B kinases are able to phosphorylate BLM on S26 in vitro. Moreover, loss of Aurora B kinase activity leads to reduction of S26 phosphorylation in mitotic cells. Cells treated with inhibitors of Aurora B fail to fully active the G2/M checkpoint after UV DNA damage. Taken together, these data suggest, that Aurora B kinase phosphorylates BLM on S26 and that this is required to fully activate the G2/M checkpoint.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Cancer cells--Growth--Regulation ; DNA replication--Regulation ; DNA repair ; Protein kinases