Use this URL to cite or link to this record in EThOS:
Title: Structure and properties of some triangular lattice materials
Author: Downie, Lewis James
ISNI:       0000 0004 5346 1505
Awarding Body: University of St Andrews
Current Institution: University of St Andrews
Date of Award: 2014
Availability of Full Text:
Access from EThOS:
Access from Institution:
This thesis is concerned with the study of two families of materials which contain magnetically frustrated triangular lattices. Each material is concerned with a different use; the first, analogues of YMnO₃, is from a family of materials called multiferroics, the second, A₂MCu₃F₁₂ (where A = Rb¹⁺, Cs¹⁺, M = Zr⁴⁺, Sn⁴⁺, Ti⁴⁺, Hf⁴⁺), are materials which are of interest due to their potentially unusual magnetic properties deriving from a highly frustrated Cu²⁺-based kagome lattice. YFeO₃, YbFeO₃ and InFeO₃ have been synthesised as their hexagonal polymorphs. YFeO₃ and YbFeO₃ have been studied in depth by neutron powder diffraction, A.C. impedance spectroscopy, Mössbauer spectroscopy and magnetometry. It was found that YFeO₃ and YbFeO₃ are structurally similar to hexagonal YMnO₃ but there is evidence for a subtle phase separation in each case. Low temperature magnetic properties are also reported, and subtle correlations between the structural, electrical and magnetic properties of these materials have been found. InFeO₃ was found to adopt a higher symmetry and is structurally similar to the high temperature phase of YMnO₃. TbInO₃ and DyInO₃ have also been synthesised and studied at various temperatures. The phase behaviour of TbInO₃ was analysed in detail using neutron powder diffraction and internal structural changes versus temperature were mapped out – there is also evidence for a subtle isosymmetric phase transition. Neither DyInO₃ nor TbInO₃ show long-range magnetic order between 2 and 300 K, or any signs of ferroelectricity at room temperature. The new compounds Cs₂TiCu₃F₁₂ and Rb₂TiCu₃F₁₂ have both been synthesised and shown to be novel kagome lattice based materials. The former shows a transition from rhombohedral to monoclinic symmetry in the powder form and from rhombohedral to a larger rhombohedral unit cell in the single crystal – a particle size based transition pathway is suggested. For Rb₂TiCu₃F₁₂ a complex triclinic unit cell is found, which distorts with lowering temperature. Both materials show magnetic transitions with lowering temperature. The solid solution Cs₂₋ₓRbₓSnCu₃F₁₂ (x = 0, 0.5, 1.0, 1.5, 2.0) was synthesised and investigated crystallographically, demonstrating a range of behaviours. Rb₂SnCu₃F₁₂ displays a rare re-entrant structural phase transition. In contrast, Cs₀.₅Rb₁.₅SnCu₃F₁₂ shows only the first transition found in the Rb⁺ end member. CsRbSnCu₃F₁₂ adopts a lower symmetry at both room temperature and below. Cs₁.₅Rb₀.₅SnCu₃F₁₂ and Cs₂SnCu₃F₁₂ show a rhombohedral - monoclinic transition, which is similar to that found in Cs₂TiCu₃F₁₂.
Supervisor: Lightfoot, Philip Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Solid state chemistry ; Fluorides ; Oxides ; Crystallography ; Magnetism ; Ferroelectrics ; Neutron diffraction ; Synchrotron X-ray diffraction ; QD478.D7 ; Solid state chemistry ; Ferromagnetic materials ; Ferroelectric crystals