Use this URL to cite or link to this record in EThOS:
Title: Non-parametric competing risks with multivariate frailty models
Author: Masuadi, E.
Awarding Body: Oxford Brookes University
Current Institution: Oxford Brookes University
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Access from Institution:
This research focuses on two theories: (i) competing risks and (ii) random eect (frailty) models. The theory of competing risks provides a structure for inference in problems where cases are subject to several types of failure. Random eects in competing risk models consist of two underlying distributions: the conditional distribution of the response variables, given the random eect, depending on the explanatory variables each with a failure type specic random eect; and the distribution of the random eect. In this situation, the distribution of interest is the unconditional distribution of the response variable, which may or may not have a tractable form. The parametric competing risk model, in which it is assumed that the failure times are coming from a known distribution, is widely used such as Weibull, Gamma and other distributions. The Gamma distribution has been widely used as a frailty distribution, perhaps due to its simplicity since it has a closed form expression of the unconditional hazard function. However, it is unrealistic to believe that a few parametric models are suitable for all types of failure time. This research focuses on a distribution free of the multivariate frailty models. Another approach used to overcome this problem is using nite mixture of parametric frailty especially those who have a closed form of unconditional survival function. In addition, the advantages and disadvantages of a parametric competing risk models with multivariate parametric and/or non-parametric frailty (correlated random eects) are investigated. In this research, four main models are proposed: rst, an application of a new computation and analysis of a multivariate frailty with competing risk model using Cholesky decomposition of the Lognormal frailty. Second, a correlated Inverse Gaussian frailty in the presence of competing risks model. Third, a non-parametric multivariate frailty with parametric competing risk model is proposed. Finally, a simulation study of nite mixture of Inverse Gaussian frailty showed the ability of this model to t dierent frailty distribution. One main issue in multivariate analysis is the time it needs to t the model. The proposed non-parametric model showed a signicant time decrease in estimating the model parameters (about 80% less time compared the Log-Normal frailty with nested loops). A real data of recurrence of breast cancer is used as the applications of these models.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available