Use this URL to cite or link to this record in EThOS:
Title: Designing and evaluating a user interface for continous embedded lifelogging based on physical context
Author: Mohamed, Esmail Esaed Tahir
Awarding Body: University of Newcastle Upon Tyne
Current Institution: University of Newcastle upon Tyne
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Access from Institution:
An increase in both personal information and storage capacity has encouraged people to store and archive their life experience in multimedia formats. The usefulness of such large amounts of data will remain inadequate without the development of both retrieval techniques and interfaces that help people access and navigate their personal collections. The research described in this thesis investigates lifelogging technology from the perspective of the psychology of memory and human-computer interaction. The research described seeks to increase my understanding of what data can trigger memories and how I might use this insight to retrieve past life experiences in interfaces to lifelogging technology. The review of memory and previous research on lifelogging technology allows and support me to establish a clear understanding of how memory works and design novel and effective memory cues; whilst at the same time I critiqued existing lifelogging systems and approaches to retrieving memories of past actions and activities. In the initial experiments I evaluated the design and implementation of a prototype which exposed numerous problems both in the visualisation of data and usability. These findings informed the design of novel lifelogging prototype to facilitate retrieval. I assessed the second prototype and determined how an improved system supported access and retrieval of users’ past life experiences, in particular, how users group their data into events, how they interact with their data, and the classes of memories that it supported. In this doctoral thesis I found that visualizing the movements of users’ hands and bodies facilitated grouping activities into events when combined with the photos and other data captured at the same time. In addition, the movements of the user's hand and body and the movements of some objects can promote an activity recognition or support user detection and grouping of them into events. Furthermore, the ability to search for specific movements significantly reduced the amount of time that it took to retrieve data related to specific events. I revealed three major strategies that users followed to understand the combined data: skimming sequences, cross sensor jumping and continued scanning.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available