Use this URL to cite or link to this record in EThOS:
Title: Automated realistic test input generation and cost reduction in service-centric system testing
Author: Bozkurt, M.
Awarding Body: University College London (University of London)
Current Institution: University College London (University of London)
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Service-centric System Testing (ScST) is more challenging than testing traditional software due to the complexity of service technologies and the limitations that are imposed by the SOA environment. One of the most important problems in ScST is the problem of realistic test data generation. Realistic test data is often generated manually or using an existing source, thus it is hard to automate and laborious to generate. One of the limitations that makes ScST challenging is the cost associated with invoking services during testing process. This thesis aims to provide solutions to the aforementioned problems, automated realistic input generation and cost reduction in ScST. To address automation in realistic test data generation, the concept of Service-centric Test Data Generation (ScTDG) is presented, in which existing services used as realistic data sources. ScTDG minimises the need for tester input and dependence on existing data sources by automatically generating service compositions that can generate the required test data. In experimental analysis, our approach achieved between 93% and 100% success rates in generating realistic data while state-of-the-art automated test data generation achieved only between 2% and 34%. The thesis addresses cost concerns at test data generation level by enabling data source selection in ScTDG. Source selection in ScTDG has many dimensions such as cost, reliability and availability. This thesis formulates this problem as an optimisation problem and presents a multi-objective characterisation of service selection in ScTDG, aiming to reduce the cost of test data generation. A cost-aware pareto optimal test suite minimisation approach addressing testing cost concerns during test execution is also presented. The approach adapts traditional multi-objective minimisation approaches to ScST domain by formulating ScST concerns, such as invocation cost and test case reliability. In experimental analysis, the approach achieved reductions between 69% and 98.6% in monetary cost of service invocations during testing
Supervisor: Harman, M. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available