Use this URL to cite or link to this record in EThOS:
Title: High-pressure computational and experimental studies of energetic materials
Author: Hunter, Steven
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
On account of the high temperatures and pressures experienced by energetic materials during deflagration and detonation, it is important to know not only the physical properties of these materials at ambient temperatures and pressures, but also to understand how their structure and properties are affected by extreme conditions. Combined computational and experimental investigations of the effects of high pressures on the structure and properties of several energetic materials are described herein. A comparison of the performances of different pseudopotentials and density functional theory (DFT) dispersion correction schemes in calculating crystal geometries and vibrational frequencies of crystalline ammonium perchlorate at high pressure is described. The results highlight the fact that care must be taken when choosing pseudopotentials for high-pressure studies. A comprehensive comparison of calculated vibrational modes (including symmetry) with experiment has been performed, with the frequencies of all internal modes predicted to lie within 5% of experimental values. This study established that no significant improvements in the calculation of crystal geometries of ammonium perchlorate are obtained by employing DFT-D corrections. The enthalpy of fusion (ΔHfus) of the highly metastable β-form of RDX (cyclotrimethylenetrinitramine) was determined to be 12.63 ± 0.28 kJ mol-1. DFT-D calculations of the lattice energies of the α- and β-forms of RDX are described. Furthermore, the response of the lattice parameters and unit-cell volumes to pressure for the α-, γ- and ε-forms of RDX calculated using DFT-D are in very good agreement with experimental data. Phonon calculations provide good agreement with vibrational frequencies obtained from Raman spectroscopy, and a predicted inelastic neutron scattering (INS) spectrum of α-RDX shows excellent agreement with experimental INS data recorded as part of this study. The results of the high-pressure phonon calculations have been used to show that the heat capacities of the α-, γ- and ε- forms of RDX are only weakly affected by pressure. DFT-D calculations have been utilised to describe accurately the structure and properties of both β-HMX (Cyclotetramethylenetetranitramine) and α-FOX-7 (1,1-Diamino-2,2-dinitroethylene) as a function of pressure. This work presents data for the experimental hydrostatic compression of both deuterated β-HMX and α-FOX-7 performed using neutron powder diffraction at the ISIS Neutron and Muon facility, in addition to experimental determinations of the INS spectra of both β-HMX and α-FOX-7. The DFT-D hydrostatic compression studies for both materials reproduce the experimental compression trends. Furthermore, the calculated vibrational properties as a function of pressure were in very good agreement with available experimental data. The results of the phonon calculations were then used to predict the effect of pressure on the heat capacities of β-HMX and α-FOX-7. These predictions suggest a very weak pressure dependence of heat capacities (approximately -1 J K-1 mol-1 GPa-1) for these materials. This work demonstrates that the DFT-D model performs extremely well over a range of conditions, and is able to describe accurately intramolecular and intermolecular interactions, and thus the structure and properties of organic molecular nitramine crystals. The computational model was therefore used to predict the high-pressure hydrostatic compression behaviour of a related nitramine, CL-20 (2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane), the results of which highlighted possible discrepancies in the experimental high-pressure X-ray diffraction data recorded for ε-CL-20. This prompted a high-pressure neutron powder diffraction study, which showed good agreement with the computational results, thereby highlighting radiation damage in the X-ray experiments.
Supervisor: Pulham, Colin; Morrison, Carole; Love, Jason Sponsor: Scottish Funding Council ; Engineering and Physical Sciences Research Council (EPSRC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: energetic materials ; DFT-D ; lattice energy ; high-pressure ; vibrational properties ; heat capacities