Use this URL to cite or link to this record in EThOS:
Title: Notch signalling pathway in murine embryonic stem cell derived haematopoiesis
Author: Huang, Caoxin
ISNI:       0000 0004 2748 3217
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Haematopoiesis is the process to produce haematopoietic stem cells (HSCs), haematopoietic progenitors (HPCs) and terminally differentiated cell types. In the adult, HSCs resided in bone marrow while in the embryo, haematopoiesis occurred sequentially in several niches including yolk sac, aorta-gonad-mesonephros (AGM) region, placenta and fetal liver. The AGM region is the first place where HSCs arise in vivo and therefore should provide important factors to induce haematopoiesis. The mouse embryonic stem cells (mESC) system is a powerful platform to mimic the development process in vitro and is widely utilized to study the underlying mechanisms because they are pluripotent and can be genetically manipulated. A novel co-culture system has been established by culturing differentiating mESCs with primary E10.5 AGM explants and a panel of clonal stromal cell lines derived from dorsal aorta and surrounding mesenchyme (AM) in AGM region. Results of these co-culture studies suggested that the AM-derived stromal cell lines could be a potent resource of signals to enhance haematopoiesis. Molecular mechanism involved in haematopoiesis is a key research direction for understanding the regulation network of haematopoiesis and for further clinical research. A series of studies have demonstrated involvement of the Notch signalling pathway in haematopoiesis during development but with controversial conclusions because of the difference of models concerning various time windows and manipulating populations. This project aimed to investigate the role of Notch signalling pathway during haematopoiesis in the AGM environment. We analyzed the expression of Notch ligands in AGM-derived stromal cells with or without haematopoietic enhancing ability. No correlation was observed between ligand expression and haematopoietic enhancing ability in stromal cell lines or between Notch activity in EBs and haematopoietic enhancing ability. We demonstrated that inhibition of the Notch signalling pathway using the γ-secretase inhibitor could abrogate Notch activity in both mES-derived cells and the haematopoietic enhancing AM stromal cell line. To better understand the involvement of the Notch signalling pathway in a more specific spatial-temporal environment, we established a co-culture system of haemangioblast like cells (Flk1+) with one of AM region derived stromal cell lines with haematopoietic enhancing ability . We found that the AM stromal cell line could enhance Flk1+ derived haematopoiesis as assessed by haematopoietic colony formation activity and production of CD41+cKit+ progenitor cells. Based on the issue that the inhibitor could potentially affect both the ES cells and stromal cells, we carried out genetic approaches to overexpress or knock down Notch signalling pathway in this Flk1+/AM co-culture system. Interestingly, it was found that when Notch activity was enhanced in Flk1+ cells, the production of haematopoietic progenitors was inhibited and the number of cells expressing the pan-haematopoietic marker CD45 was reduced. By using the inducible dominant negative MAML1 system to knock down Notch activity, it was found that the haematopoiesis in the Flk1+/AM co-culture system was not affected, which could be accounted for the low Notch activity in this system. These results supported the hypothesis that the Notch signalling pathway plays a role in modulating Flk1+ derived haematopoietic differentiation within the AGM microenvironment.
Supervisor: Forrester, Lesley Sponsor: Medical Research Council (MRC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: haematopoiesis ; Notch ; embryonic stem cells