Use this URL to cite or link to this record in EThOS:
Title: Bridging the specification protocol gap in argumentation
Author: Maghraby, Ashwag Omar
ISNI:       0000 0004 2747 541X
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
As multi-agent systems (MAS) have become more mature and systems in general have become more distributed, it is necessary for those who want to build large scale systems to consider, in some computational depth, how agents can communicate in large scale, complex and distributed systems. Currently, some MAS systems have been developed to use an abstract specification language for argumentation. This as a basis for agent communication; to provide effective decision support for agents and yield better agreements. However, as we build complete MAS that involve argumentation, there is a need to produce concrete implementations in which these abstract specifications are realised via protocols coordinating agent behaviour. This creates a gap between standard argument specification and deployment of protocols. This thesis attempts to close this gap by using a combination of automated synthesis and verification methods. More precisely, this thesis proposes a means of moving rapidly from argument specification to protocol implementation using an extension of the Argument Interchange Format (AIF is a generic specification language for argument structure) called a Dialogue Interaction Diagram (DID) as the dialogue game specification language and the Lightweight Coordination Calculus (LCC is an executable specification language used for coordinating agents in open systems) as an implementation language. The main contribution of this research is to provide approaches for enabling developers of dialogue game argumentation systems to use specification languages (in our case AIF/DID) to generate agent protocol systems that are capable of direct implementation on open infrastructures (in our case LCC).
Supervisor: Robertson, Dave; Rovatsos, Michael Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: program synthesis ; automated synthesis ; dialogue game ; argumentation ; multi-agent systems ; MAS protocol