Use this URL to cite or link to this record in EThOS:
Title: Stem cell function in the mouse corneal epithelium
Author: Mort, Richard Lester
ISNI:       0000 0004 2751 8336
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2007
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Limbal stem cells maintain the corneal epithelium through a process of clonal growth and ordered migration. In X-inactivation mosaic female mice, that express LacZ from one of their X-chromosomes, random clumps of LacZ-positive cells are seen in the cornea at 3-6 weeks of life. This pattern resolves between 6-10 weeks forming radial stripes thought to represent chords of clonally related, inwardly migrating cells. By measuring the number and width of stripes and correcting for the effects of different proportions of LacZ-positive cells, an estimate of the number of coherent stem cell clones maintaining the tissue can be derived. Analysis at 5 ages demonstrated that the estimated number of coherent stem cell clones is reduced from ~100 at 15 weeks to ~50 at 39 weeks and is then stable at least until 52 weeks. An automated method was developed using image analysis software to analyse these striping patterns. This method produced results that did not differ significantly from the above. The dosage of the transcription factor Pax6 is crucial for normal eye development. In Pax6 heterozygous animals the estimated number of coherent stem cell clones is reduced to ~50 at 15 weeks with no further reduction up to 30 weeks. Mice hemizygous for the PAX77 transgene over-express human PAX6. In PAX77 hemizygous X-inactivation mosaics, estimated clone number was similarly reduced to ~50 with no further decline. Mice heterozygous for both Gli3 and Pax6 have a distinct striping phenotype, highlighted by an increase in coherent clones. When the corneal epithelium is injured the surrounding epithelial cells migrate along the corneal stroma to cover the wound. X-gal staining of healed, centrally wounded X-inactivation eyes reveals that striping patterns are reconstituted during wound healing in ex-vivo culture. In GFP mosaics the healing process can be imaged using time-lapse confocal microscopy. This technique demonstrated that clones remain contiguous throughout their migration. Healing of peripheral wounds was observed to form de-novo whorling patterns, revealing that basal cells in the epithelium can migrate both away from and towards the limbal region.
Supervisor: West, John; Morley, Steve Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: corneal epithelium ; limbal stem cells