Use this URL to cite or link to this record in EThOS:
Title: Electrical processes in heavy rain in the Tropics
Author: Lane-Smith, Derek R.
ISNI:       0000 0004 2750 2430
Awarding Body: Durham University
Current Institution: Durham University
Date of Award: 1969
Availability of Full Text:
Access from EThOS:
Access from Institution:
The thesis is based on research carried out in Sierra Leone over a period of several years. An asymmetric field mill and a 'wide-angle' shielded receiver have been developed for the measurement of electric field and precipitation current in tropical thunderstorms. A detailed field-mill theory is presented which analyses the effects of leakage currents, inadequate grounding, contact potentials, conduction current, 'pick-up' of fluctuating electric fields and noise in the amplifier. Principles are deduced for the optimum design of a precision field mill using either a phase sensitive detector or an asymmetric signal. Measurements of precipitation current and its response to step changes in the field show that turbulent diffusion of splash droplets probably constitutes an important, even dominant, electrical process in heavy rain. The response of precipitation current to a lightning flash, averaged over many flashes, is large and has a delay of a few seconds. From the analysis of various models considered as a mechanism to explain the results it is deduced that charge carried on splash droplets is being diffused upwards by turbulence, transported by wind and is itself precipitating into the rain receiver. An experiment was performed to measure the electric current due to evaporation. The results show that the current due to evaporation in the presence of an electric field is much smaller than that due to conduction in air. The observation of a 'warm' thunderstorm cloud is reported. A project was developed to make visual and electrical measurements simultaneously on the same cloud. A time lapse film of tropical clouds, together with some electric field measurements beneath them, are used to discuss the flow pattern associated with a tropical thunderstorm and the mechanism by which it becomes charged. Appendices include an analysis of the shielding effect of a vertical rod at ground potential, the description of some further instrumentation, including a data processing system designed by the author which uses a novel but effective method of detecting the occurrence of the peak of a signal, more detailed mathematical derivations of equations used in the main text and a filming schedule for the time-lapse photography.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available