Use this URL to cite or link to this record in EThOS:
Title: Study of the hydrodynamic processes of rivers and floodplains with obstructions
Author: Teo, Fang Yenn
ISNI:       0000 0004 2749 9841
Awarding Body: Cardiff University
Current Institution: Cardiff University
Date of Award: 2010
Availability of Full Text:
Access from EThOS:
Access from Institution:
A study has been undertaken to supplement design methods and develop innovative approaches for the effective management of rivers and floodplains to reduce flood risk. The focus has been on enhancing the understanding and representation of the hydrodynamic processes of a variety of flow conditions and the associated hydraulic interaction with selected obstruction types, such as mangroves and vehicles for the representative river basins of the Merbok and Klang, on the West Coast of Peninsular Malaysia, and the Valency, near Boscastle, in the UK. For the study of the hydrodynamic processes of natural floodplains, a numerical model has been refined to investigate the effects of mangroves on tsunamis, with the inclusion of modelling idealised test cases. A similar model has then been applied to a mangrove fringed floodplain for the Merbok river basin. In recognising the importance of mangroves as natural defences against flooding disasters, a novel innovative and environmentally friendly approach, namely the Artificial Mangrove Shelter (AMS), has been first initiated and modelled, for the sustainable restoration and rehabilitation of mangroves along floodplains. In studying the hydrodynamic processes of urban floodplains, a series of experimental investigations has been undertaken on stationary scaled model vehicles in laboratory flumes, to study the effects of vehicles on flood flow propagation and, the influence of the flood flows on the stability of the vehicles. In order to develop a useful innovative approach to evaluate the degree of hydraulic stability for vehicles, a novel three colour zone envelope curve has been first introduced and developed, herein known as the Traffic Light of Hydraulic Stability (TLHS), to identify the likelihood of vehicle movement. The study was then extended to investigate the consequential hydraulic impact of flooded vehicles on blocked bridges, through a physical modelling study in a laboratory flume, with the purpose being to replicate a typical section of prototype floodplain conditions for the Boscastle and Klang. In this study, eventually natural and urban environments along the rivers and floodplains have consideration the hydrodynamic processes and interaction between hydraulic obstructions and flood flows, with novel and practical approaches being developed for effective management of rivers and floodplains.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available