Use this URL to cite or link to this record in EThOS:
Title: Nature-inspired optimisation : improvements to the Particle Swarm Optimisation Algorithm and the Bees Algorithm
Author: Sholedolu, Michael O.
ISNI:       0000 0004 2748 8763
Awarding Body: Cardiff University
Current Institution: Cardiff University
Date of Award: 2009
Availability of Full Text:
Access from EThOS:
Access from Institution:
This research focuses on nature-inspired optimisation algorithms, in particular, the Particle Swarm Optimisation (PSO) Algorithm and the Bees Algorithm. The PSO Algorithm is a population-based stochastic optimisation technique first invented in 1995. It was inspired by the social behaviour of birds flocking or a school of fish. The Bees Algorithm is a population-based search algorithm initially proposed in 2005. It mimics the food foraging behaviour of swarms of honey bees. The thesis presents three algorithms. The first algorithm called the PSO-Bees Algorithm is a cross between the PSO Algorithm and the Bees Algorithm. The PSO-Bees Algorithm enhanced the PSO Algorithm with techniques derived from the Bees Algorithm. The second algorithm called the improved Bees Algorithm is a version of the Bees Algorithm that incorporates techniques derived from the PSO Algorithm. The third algorithm called the SNTO-Bees Algorithm enhanced the Bees Algorithm using techniques derived from the Sequential Number-Theoretic Optimisation (SNTO) Algorithm. To demonstrate the capability of the proposed algorithms, they were applied to different optimisation problems. The PSO-Bees Algorithm is used to train neural networks for two problems, Control Chart Pattern Recognition and Wood Defect Classification. The results obtained and those from tests on well known benchmark functions provide an indication of the performance of the algorithm relative to that of other swarm-based stochastic optimisation algorithms. The improved Bees Algorithm was applied to mechanical design optimisation problems (design of welded beams and coil springs) and the mathematical benchmark problems used previously to test the PSO-Bees Algorithm. The algorithm incorporates cooperation and communication between different neighbourhoods. The results obtained show that the proposed cooperation and communication strategies adopted enhanced the performance and convergence of the algorithm. The SNTO-Bees Algorithm was applied to a set of mechanical design optimisation problems (design of welded beams, coil springs and pressure vessel) and mathematical benchmark functions used previously to test the PSO-Bees Algorithm and the improved Bees Algorithm. In addition, the algorithm was tested with a number of deceptive multi modal benchmark functions. The results obtained help to validate the SNTO-Bees Algorithm as an effective global optimiser capable of handling problems that are deceptive in nature with high dimensions.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available