Use this URL to cite or link to this record in EThOS:
Title: Use of extreme value theory for making statistical inference about endpoints of distributions, with applications in global optimization and meteorology
Author: Hamilton, Emily
ISNI:       0000 0004 2751 7317
Awarding Body: Cardiff University
Current Institution: Cardiff University
Date of Award: 2008
Availability of Full Text:
Access from EThOS:
Access from Institution:
We use extreme value theory to make statistical inference about the endpoint of distributions. First we compare estimators of the endpoint of several distributions, including a distribution that appears in problems of global optimization. These estimators use a fixed number of order statistics (k) from a sample of fixed size (n). Two of the estimators investigated are the optimal linear estimator and the maximum likelihood estimator. We find that the optimal linear estimator often outperforms the maximum likelihood estimator. We next investigate how the order statistics change as sample size increases. In order to do this, we define record times: the sample size at which the set of k smallest order statistics changes. We give the distributions of several statistics related to order statistics and record times, in particular we show that records occur according to a nonhomogeneous Poisson process. We show that order statistics can be modeled using a Markov chain, and use this Markov chain to investigate estimators of the endpoint of a distribution. Two additional estimators are derived and investigated using the Markov chain model. Finally, we consider a meteorological application of extreme value theory. In particular, we estimate the maximum and minimum sea level at several ports in the Netherlands. This is done using a combination of record theory, singular spectrum decomposition and known estimators of the endpoint of a distribution.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available