Title:
|
The operation of LaB6 cathode in the virtual source mode
|
This thesis describes the design of a novel electron cathode as utilised in electron
microscopes and electron beam lithography columns. The Lanthanum Hexaboride
(LaB6) cathode is a high brightness thermionic electron cathode with lower operating
temperature and increased lifetime compared to those obtained by the conventional
thermionic tungsten (W) cathodes. This cathode also has several similarities to the
zirconium on tungsten Zr/O/W (100) Schottky field emission cathode (SFE) including
similar operating temperature of 1800K and similar work function. One important
difference is that the LaB6 does not require as stringent vacuum requirements, as the
SFE or indeed other field emission based cathodes. LaB6 cathodes normally operate
with a stable beam current at vacuum regimes of 1O-7mbar. The significant difference
between these two cathodes is their respective brightness being more than xl00 apart.
The reason for this is their different mode of operation. As a result, the SFE cathode has
a virtual source size of order 20-30 nrn, whilst the LaB6 cathode has a real crossover
source of 5-20/-lm in size, depending on the physical cathode size used.
The underlying objective of this research was to operate a thermionic LaB6 cathode in a
virtual source mode, similar to a SFE cathode. The expectation is to increase this
cathode's brightness, whilst benefiting from its less stringent vacuum operational
requirements.
The LaB6 cathode operating in the virtual source mode (VS-LaB6) is capable of filling
the brightness gap between the thermionic class of cathodes and those operated in the
virtual source mode. It also possesses the benefit of a simpler design and operational
requirements of a new class of higher brightness electron beam columns with a moderate
vacuum.
Experiments were performed to demonstrate the theoretical principle underlying the
operation of a LaB6 in the virtual source mode. Data obtained using the VS- LaB6
cathode showed a performance improvement in brightness of nearly a single order of
magnitude when operated in an electron microscope over the conventional LaB6
cathode. The V - LaB6 cathode was also successfully installed on a modern Carl Zeiss
Evo 15 Scanning Electron Microscope (SEM), which saw a considerable improvement
in resolution.
|