Use this URL to cite or link to this record in EThOS:
Title: Susceptibility of alternative splicing to interference by xenobiotics : implications for the use of Drosophila in toxicological studies
Author: Zaharieva, Emanuela
ISNI:       0000 0004 2748 9598
Awarding Body: University of Birmingham
Current Institution: University of Birmingham
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Access from Institution:
Alternative splicing occurs in more than 90% of human genes and is particularly abundant in the nervous system. It has been recognized that toxicity can be caused at the level of pre-mRNA processing and potentially lead to age-dependent neurodegeneration upon low-dose chronic exposure. ELAV (Embryonic Lethal Abnormal Visual system)/Hu family proteins are prototype RNA binding protein and gene specific regulators of alternative mRNA splicing in the nervous system. Analysis of mutants in ELAV family proteins shows overlapping and distinct functions during development and age-dependent neurodegeneration. Overexpression of ELAV family proteins further revealed that cytoplasmic localization of ELAV family proteins in associated with enhanced neurotoxicity. Intriguingly all Drosophila ELAV family proteins and mammalian Hu proteins can regulate neuron-specific alternative splicing of Drosophila neuroglian gene- a known ELAV target. The blood brain barrier (BBB) and efficient excretion are protective mechanisms making delivery of many drugs to the brain difficult in vivo. Therefore, I analyzed the roles of a number of key Organic Anion Transporter Protein (OATP) and Multi- Drug Resistance (MDR) proteins and established a sensitized genetic background for CNS drug delivery. To assess if xenobiotics can interfere with ELAV function leading to neurodevelopmental/neurodegenerative defects, I assessed ELAV regulation of its major target erect wing (ewg) using an ewg fluorescent reporter, which recapitulates endogenous ELAV-mediated splicing and allows rapid visualization of potential modulators. From a compound screen in a sensitized genetic background, I identified a number of xenobiotics that cause changes in ewg splicing, indicating interference with ELAV function. Importantly, these compounds also phenocopy specific characteristics of ELAV mutants. My approach demonstrates the potential for using Drosophila in drug screening and neurotoxicity assessments.
Supervisor: Not available Sponsor: MRC
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Q Science (General) ; QH301 Biology ; QH426 Genetics ; QR Microbiology