Use this URL to cite or link to this record in EThOS:
Title: Detecting plagiarism in the forensic linguistics turn
Author: Sousa Silva, Rui
ISNI:       0000 0004 2746 3582
Awarding Body: Aston University
Current Institution: Aston University
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Access from Institution:
This study investigates plagiarism detection, with an application in forensic contexts. Two types of data were collected for the purposes of this study. Data in the form of written texts were obtained from two Portuguese Universities and from a Portuguese newspaper. These data are analysed linguistically to identify instances of verbatim, morpho-syntactical, lexical and discursive overlap. Data in the form of survey were obtained from two higher education institutions in Portugal, and another two in the United Kingdom. These data are analysed using a 2 by 2 between-groups Univariate Analysis of Variance (ANOVA), to reveal cross-cultural divergences in the perceptions of plagiarism. The study discusses the legal and social circumstances that may contribute to adopting a punitive approach to plagiarism, or, conversely, reject the punishment. The research adopts a critical approach to plagiarism detection. On the one hand, it describes the linguistic strategies adopted by plagiarists when borrowing from other sources, and, on the other hand, it discusses the relationship between these instances of plagiarism and the context in which they appear. A focus of this study is whether plagiarism involves an intention to deceive, and, in this case, whether forensic linguistic evidence can provide clues to this intentionality. It also evaluates current computational approaches to plagiarism detection, and identifies strategies that these systems fail to detect. Specifically, a method is proposed to translingual plagiarism. The findings indicate that, although cross-cultural aspects influence the different perceptions of plagiarism, a distinction needs to be made between intentional and unintentional plagiarism. The linguistic analysis demonstrates that linguistic elements can contribute to finding clues for the plagiarist’s intentionality. Furthermore, the findings show that translingual plagiarism can be detected by using the method proposed, and that plagiarism detection software can be improved using existing computer tools.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available