Use this URL to cite or link to this record in EThOS:
Title: Neuronal computation on complex dendritic morphologies
Author: Caudron, Quentin
ISNI:       0000 0004 2748 8990
Awarding Body: University of Warwick
Current Institution: University of Warwick
Date of Award: 2012
Availability of Full Text:
Access from EThOS:
Access from Institution:
When we think about neural cells, we immediately recall the wealth of electrical behaviour which, eventually, brings about consciousness. Hidden deep in the frequencies and timings of action potentials, in subthreshold oscillations, and in the cooperation of tens of billions of neurons, are synchronicities and emergent behaviours that result in high-level, system-wide properties such as thought and cognition. However, neurons are even more remarkable for their elaborate morphologies, unique among biological cells. The principal, and most striking, component of neuronal morphologies is the dendritic tree. Despite comprising the vast majority of the surface area and volume of a neuron, dendrites are often neglected in many neuron models, due to their sheer complexity. The vast array of dendritic geometries, combined with heterogeneous properties of the cell membrane, continue to challenge scientists in predicting neuronal input-output relationships, even in the case of subthreshold dendritic currents. In this thesis, we will explore the properties of neuronal dendritic trees, and how they alter and integrate the electrical signals that diffuse along them. After an introduction to neural cell biology and membrane biophysics, we will review Abbott's dendritic path integral in detail, and derive the theoretical convergence of its infinite sum solution. On certain symmetric structures, closed-form solutions will be found; for arbitrary geometries, we will propose algorithms using various heuristics for constructing the solution, and assess their computational convergences on real neuronal morphologies. We will demonstrate how generating terms for the path integral solution in an order that optimises convergence is non-trivial, and how a computationally-significant number of terms is required for reasonable accuracy. We will, however, derive a highly-efficient and accurate algorithm for application to discretised dendritic trees. Finally, a modular method for constructing a solution in the Laplace domain will be developed.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: QP Physiology