Use this URL to cite or link to this record in EThOS:
Title: Numerical modelling of soil-pile-structure interaction
Author: Dewsbury, Jonathan J.
ISNI:       0000 0004 2748 1430
Awarding Body: University of Southampton
Current Institution: University of Southampton
Date of Award: 2012
Availability of Full Text:
Full text unavailable from EThOS.
Please contact the current institution’s library for further details.
Soil-pile-structure interaction analysis is the simultaneous consideration of the structural frame, pile foundations, and the soil forming the founding material. Failure to consider soil-pile-structure interaction in design will lead to a poor prediction of load distribution within the structure. A poor prediction of load distribution will cause the structure to deform under loads that have not been calculated for. This may result in the structure cracking or the overstressing of columns. If the actual load distribution significantly differs from that designed for, the factor of safety on structural elements may be substantially decreased. Despite the importance, there are currently no studies quantifying the effect of soil-pile-structure interaction for simple office structures. As a result the effects of soil-pile-structure interaction are often deemed unimportant, and ignored in the design of simple structures. Numerical methods are often relied upon to consider soil-pile-structure interaction for complex structures, such as tall towers. However in their current form they are limited because the meshes required for analysis, especially when in three dimensions, are difficult to verify, and take a long time to set up and run. Therefore this thesis proposes a meshing method within the framework of the finite element method that allows large, complex, and non-symmetrical pile foundation layouts to be meshed in a manner that is quick, can be easily checked, and significantly reduces the analysis run time. Application of the meshing method to an office structure (recently designed for the 2012 Olympic Games) has allowed the effects of soil-pile-structure interaction to be quantified. The subsequent normalisation of the results provides a method for assessing when it is necessary to consider soil- pile-structure interaction in future design. Comparison between the monitored performance of 'The Landmark' (a 330m tower founded on a piled raft) and numerical predictions have demonstrated the importance of correct ground stiffness selection for achieving accurate predictions of piled raft settlement, and load distribution. The role of single pile load tests and in situ testing for ground stiffness selection for piled raft design has also been assessed
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Eng.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available