Use this URL to cite or link to this record in EThOS:
Title: Quantum electrodynamic shifts of mass and magnetic moment near dielectric or conducting surfaces
Author: Bennett, Robert
ISNI:       0000 0004 2747 4089
Awarding Body: University of Sussex
Current Institution: University of Sussex
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Quantum electrodynamics is the spectacularly successful theory of the interaction of light and matter. Its consequences are well-understood, and have been experimentally verified to extreme precision. What is not generally known is how these predictions change when the theory is considered in anything other than free space - near a surface, for example. A material boundary causes vacuum fluctuations of the electromagnetic field to be different from their counterparts in free space, causing the electromagnetic environment of a microscopic system sitting near the boundary to differ from that if the surface were not present. This causes a variety of surface-dependent shifts in the properties of the microscopic system - this work investigates these shifts for a free electron. First using explicit normal mode expansion and analytic continuation of the wave-vector in the complex plane, and then using a semi-phenomenological `noise current' approach, the work presents derivations of formulae for the shifts in the mass and magnetic moment of an electron near a dispersive and absorbing surface. The formalism is also extended to the case where the electron is subject to a harmonic potential. It is noted that results for different models of the surface do not agree in the expected limiting cases due to their differing behaviour at low frequency, which leads to the conclusion that one must be very careful to use an appropriate model of a particular surface when considering quantum electrodynamic surface effects. Analysis of the results shows that use of a realistic model of the surface can make these shifts orders of magnitude larger than previous calculations had suggested, since they all relied on the somewhat unrealistic assumption that the surface is perfectly reflecting. This is shown to be particularly relevant to experiments which aim to measure the anomalous magnetic moment of an electron.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: QC0680 Quantum electrodynamics