Use this URL to cite or link to this record in EThOS:
Title: Controlled crystallisation of calcium phosphate and calcium carbonate via bio-inspired approaches : additives and confinement
Author: Cantaert, Bram
ISNI:       0000 0004 2745 3157
Awarding Body: University of Leeds
Current Institution: University of Leeds
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Access from Institution:
This thesis describes the investigation of the two bio-inspired approaches, confinement and additives, to manipulate the crystallization of calcium carbonate and calcium phosphate. The first experimental chapter deals with the investigation of calcium phosphate rods grown in confined environments in the absence and presence of polyaspartic acid. Although similar results were obtained in the absence and presence of the additive, growing calcium phosphate in confinement allowed formation of polycrystalline rods with an orientation comparable to bone. This demonstrated that confinement may play a more significant role in bone formation than previously anticipated. The second chapter deals with the effect of positively charged additives on the crystallisation of CaCO3. Although neglected before in literature, this chapter demonstrates that positively charged additives have a profound effect on the crystallisation of CaCO3 changing the morphology to films and fibers. This morphology change was linked to a phase separation process, forming hydrated amorphous droplets of calcium carbonate by a carbonate-polymer interaction, which had the tendency to coalesce and form films. Fiber formation was attributed to oriented attachment of anisotropic particles due to unequal distribution of charge. In the third chapter, based on bone, the mineralisation of collagen by CaCO3 was investigated. By formation of a highly hydrated liquid-like amorphous phase of CaCO3, it was possible to infiltrate the nanoscale gaps of collagen. After crystallisation, nanocrystals of calcite and vaterite were formed, 5 nm thick, but randomly oriented, demonstrating collagen templates the shape but not the orientation of the crystals. In a final chapter hollow rods of CaCO3 were formed by templating them inside membrane pores. The influence of time, pore size, additives and surface chemistry was investigated. Most hollow rods were formed at early timescales which filled up at later times. By changing the surface chemistry, the amount of hollow rods increased significantly in the 200 nm pores
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available