Use this URL to cite or link to this record in EThOS:
Title: Aspects of low Reynolds number microswimming using singularity methods
Author: Curtis, Mark Peter
ISNI:       0000 0004 2747 1339
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Three different models, relating to the study of microswimmers immersed in a low Reynolds number fluid, are presented. The underlying, mathematical concepts employed in each are developed using singularity methods of Stokes flow. The first topic concerns the motility of an artificial, three-sphere microswimmer with prescribed, non-reciprocal, internal forces. The swimmer progresses through a low Reynolds number, nonlinear, viscoelastic medium. The model developed illustrates that the presence of the viscoelastic rheology, when compared to a Newtonian environment, increases both the net displacement and swimming efficiency of the microswimmer. The second area concerns biological microswimming, modelling a sperm cell with a hyperactive waveform (vigorous, asymmetric beating), bound to the epithelial walls of the female, reproductive tract. Using resistive-force theory, the model concludes that, for certain regions in parameter space, hyperactivated sperm cells can induce mechanical forces that pull the cell away from the wall binding. This appears to occur via the regulation of the beat amplitude, wavenumber and beat asymmetry. The next topic presents a novel generalisation of slender-body theory that is capable of calculating the approximate flow field around a long, thin, slender body with circular cross sections that vary arbitrarily in radius along a curvilinear centre-line. New, permissible, slender-body shapes include a tapered flagellum and those with ribbed, wave-like structures. Finally, the detailed analytics of the generalised, slender-body theory are exploited to develop a numerical implementation capable of simulating a wider range of slender-body geometries compared to previous studies in the field.
Supervisor: Gaffney, Eamonn Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Fluid mechanics (mathematics) ; Mathematical biology ; slender-body theory ; viscous fluid ; viscoelastic fluid ; swimmer ; singularities ; low Reynolds number