Use this URL to cite or link to this record in EThOS:
Title: Ultra-wideband imaging techniques for medical applications
Author: Ghavami, Navid
ISNI:       0000 0004 2747 0782
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Ultra-wideband (UWB) radio techniques have long promised good contrast and high resolution for imaging human tissue and tumours; however, to date, this promise has not entirely been realised. In recent years, microwave imaging has been recognised as a promising non-ionising and non-invasive alternative screening technology, gaining its applicability to breast cancer by the significant contrast in the dielectric properties at microwave frequencies of normal and malignant tissues. This thesis deals with the development of two novel imaging methods based on UWB microwave signals. First, the mode-matching (MM) Bessel-functions-based algorithm, which enables the identification of the presence and location of significant scatterers inside cylindrically-shaped objects is introduced. Next, with the aim of investigating more general 3D problems, the Huygens principle (HP) based procedure is presented. Using HP to forward propagate the waves removes the need to apply matrix generation/inversion. Moreover, HP method provides better performance when compared to conventional time-domain approaches; specifically, the signal to clutter ratio reaches 8 dB, which matches the best figures that have been published. In addition to their simplicity, the two proposed methodologies permit the capture of a minimum dielectric contrast of 1:2, the extent to which different tissues, or differing conditions of tissues, can be discriminated in the final image. Moreover, UWB allows all the information in the frequency domain to be utilised, by combining information gathered from the individual frequencies to construct a consistent image with a resolution of approximately one quarter of the shortest wavelength in the dielectric medium. The power levels used and the specific absorption rates are well within safety limits, while the bandwidths satisfy the UWB definition of being at least 20% of the centre frequencies. It follows that the methodologies permit the detection and location of significant scatterers inside a volume. Validation of the techniques through both simulations and measurements have been performed and presented, illustrating the effectiveness of the methods.
Supervisor: Edwards, David J.; Tiberi, Gianluigi Sponsor: EPSRC
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Engineering & allied sciences ; Biomedical engineering ; Communications engineering (optical,microwave and radio) ; Electrical engineering ; medical imaging ; UWB antennas ; microwave imaging ; ultra wideband ; Huygens principle