Use this URL to cite or link to this record in EThOS:
Title: Confinement of colloidal liquid crystals
Author: Dammone, Oliver James
ISNI:       0000 0004 2746 7233
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Restricted access.
Access from Institution:
The behavior of colloidal liquid crystals in confinement is addressed on the single particle level using laser scanning confocal microscopy. We seek to disentangle how equilibrium director fields are controlled by the complex interplay between confinement, elasticity and surface anchoring. First, we study the nematic phase confined to wedge structured channels. Varying the wedge opening angle leads to a splay to bend transition mediated by a defect in the bulk of the wedge. Our results are in quantitative agreement with lattice Boltzmann simulations, and we show that comparison between experiments and simulation yields a new method to obtain the splay-to-bend elasticity ratios of colloidal and biological liquid crystals. Next, we extend our study of the wedge structured channels to the cholesteric phase, and measure a splay to twist transition with increasing wedge angle. We directly visualise the 3D nature of the twisted state, and explain how the transition is intricately determined by the anchoring strength and the splay, bend, and twist elasticities. Next, we investigate the effect of rectangular confinement on the nematic phase. The rectangle aspect ratio is systematically varied and we observe five distinct director fields. Comparison with computations of the Frank-Oseen energies yields the extrapolation length, which we find to be of the order of the rod length. Next, we confine the nematic phase to annular geometries of varying dimensions, and observe the novel director fields that are adopted. We approach a level of confinement which is of the order of the particle size. Interpreting our observations with Monte Carlo simulations, which take into account the finite size of the particles, illuminates the applicability of continuum theories down to microscopic lengthscales. We finish with a study of the isotropic-nematic interface in bulk and confinement. We show that parallel anchoring occurs at the interface, and measure the width of the interface to be of the order of the rod length.
Supervisor: Aarts, D. G. A. L.; Lettinga, M. P. Sponsor: Engineering and Physical Sciences Research Council
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Physical & theoretical chemistry ; colloids ; liquid crystals