Use this URL to cite or link to this record in EThOS:
Title: Novel regulation of SRC family kinase signalling by RASSF1 isoforms
Author: Scrace, Simon Francis
ISNI:       0000 0004 2746 514X
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Restricted access.
Access from Institution:
RASSF1A is a tumour suppressor, the silencing of which occurs through promoter methylation in a variety of human cancers. Loss of RASSF1A is associated with decreased sensitivity to DNA damaging agents and worse prognosis in breast, colon and lung cancers amongst others. RASSF1A functions in a number of cellular processes, promoting apoptosis in response to DNA damage or death receptor signalling, or cell cycle arrest at both G1/S and pro-metaphase checkpoints. As a scaffold protein, RASSF1A imparts these functions through direct interaction with target proteins. We have identified a novel interaction between RASSF1A and the SRC activator, OSSA. Further studies identify a role for RASSF1 in SRC signalling. We find that a second isoform of RASSF1, RASSF1C, the expression of which is maintained in cancers, is able to activate SRC. We also identify a novel tumour suppressor role for RASSF1A inhibiting SRC activation through binding of RASSF1C. SRC activation by RASSF1C expression promotes internalisation of adherens junctions leading to subsequent loss of tight junctions and cell polarity markers from sites of cell-cell contact. -catenin is also found to be re-localised throughout the cells from where it is hypothesised to be able to upregulate pro-proliferative genes. In addition, we find that RASSF1C expression promotes cell motility in both scratch wound and transwell assays. Finally, we show that RASSF1C expression enhances tumour cell aggressiveness using a mammosphere growth assay. We conclude that RASSF1C is an oncogene that can promote EMT through the activation of SRC family kinases. This function is inhibited by the tumour suppressor RASSF1A. This work highlights why RASSF1A is lost through epigenetic mechanisms and not mutation and why loss of RASSF1A is associated with more aggressive, metastatic cancers.
Supervisor: O'Neill, Eric Sponsor: Cancer Research UK
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Oncology ; Radiation ; DNA damage signalling ; Biology (medical sciences) ; Medical Sciences ; SRC Family Kinase ; Cell Signalling