Use this URL to cite or link to this record in EThOS:
Title: The role of protein arginine methylation in T-lymphocyte activation
Author: Geoghegan, Vincent L.
ISNI:       0000 0004 2745 1266
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2012
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
T-lymphocytes are an essential cell type of the adaptive immune system. Due to their importance in immune responses and disorders, the molecular mechanisms leading to T-lymphocyte activation have been the subject of extensive research which has translated into important therapeutic developments. Early signalling events involving tyrosine phosphorylation are well characterised. However, later events involving other post-translational modifications are less well understood. Several studies have provided evidence suggesting a role for protein arginine methylation in T-lymphocyte activation. Arginine methylation is an essential post-translational modification in mammals and yet has not been extensively studied. No large scale analysis of arginine methylation sites has been performed. To gain insight into the role of protein arginine methylation in T-lymphocyte activation, the aims of this work were to: 1. Establish whether levels of arginine methylation are altered during Tlymphocyte activation 2. Use mass spectrometry based proteomics to identify arginine methylated proteins in the T-lymphocyte proteome 3. Further characterise an arginine methylated protein important to Tlymphocyte activation Arginine methylation was found to be induced after long term (>20 hours) stimulation of primary T-lymphocytes. Large increases in the main protein arginine methyltransferase, PRMT1, were also observed. Enrichment and labelling methods were developed to detect arginine methylated peptides from T-lymphocytes by mass spectrometry. This resulted in the identification of 265 unique arginine methylation sites in 141 proteins. 204 of the methylation sites were novel and 103 of the proteins had not previously been described as arginine methylated. Individual arginine methylation sites were characterised before and after activation of T-lymphocytes, with some sites showing significant changes in abundance. Among the novel arginine methylated proteins discovered were Dynamin II, WASp and WIPF1. These proteins are involved in re-organisation of the actin cytoskeleton at the immunological synapse formed between a Tlymphocyte and an antigen presenting cell. The functional consequences of the arginine methylation sites inWASp were characterised. WASp is essential for T-lymphocyte activation and some initial evidence showed that one of the arginine methylation sites is important for WASp activation.
Supervisor: Acuto, Oreste Sponsor: Biotechnology and Biological Sciences Research Council
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Life Sciences ; Biology ; Cell Biology (see also Plant sciences) ; Immunochemistry ; Biochemistry ; Immunology ; Mass spectrometry ; Protein chemistry ; T-cells ; T-lymphocytes ; T-cell ; T-lymphocyte ; arginine methylation ; protein methylation ; proteomics ; heavy methyl SILAC ; WASp ; Dynamin ; post-translational modifications ; PTMs