Use this URL to cite or link to this record in EThOS:
Title: Crosstalk between histone modifications in Saccharomyces cerevisiae
Author: Howe, Françoise Sara
ISNI:       0000 0004 2744 8841
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2012
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
The N-terminal tails of histone proteins protrude from the nucleosome core and are extensively post-translationally modified. These modifications are proposed to affect many DNA-based processes such as transcription, DNA replication and repair. Post-translational modifications on histone tails do not act independently but are subject to crosstalk. One example of crosstalk is on histone H3 between lysine 14 (H3K14) and trimethylated lysine 4 (H3K4me3), a modification found at the 5’ end of most active or poised genes. In this work, Western blots and chromatin immunoprecipitation (ChIP) experiments show that different amino acid substitutions at histone H3 position 14 cause varying degrees of H3K4me3 loss, indicating that H3K14 is not essential for H3K4me3 but acts as a modulator of H3K4me3 levels. A neighbouring residue, H3P16 is also important for H3K4me3 and may operate in concert with H3K14 to control H3K4me3. These crosstalk pathways have gene-specific effects and the levels of H3K4me3 are influenced to different extents on genes that fall into functionally distinct classes. A model is proposed to explain how H3K14/H3P16 may exert these varying effects on H3K4me3 at individual genes. In addition to its ability to regulate H3K4me3, H3K14 also influences the levels of two modifications on H3K18, acetylation and monomethylation. A ChIP-sequencing experiment has shown that H3K18me1, a previously uncharacterised modification in S. cerevisiae, is widely distributed throughout the genome and correlates strongly with histone H3 levels. The potential for a functional acetyl/methyl switch at H3K18 is explored. Together, these data indicate that, with gene-specific effects, crosstalk between histone modifications may be even more complex than originally thought.
Supervisor: Mellor, Elizabeth Jane Sponsor: Wellcome Trust
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Biochemistry ; Genetics (life sciences) ; Molecular genetics ; chromatin ; histone H3 ; histone modifications ; histone methylation ; histone acetylation ; proline isomerisation ; crosstalk ; gene expression ; transcription ; yeast ; Saccharomyces cerevisiae