Use this URL to cite or link to this record in EThOS:
Title: Dynamical system decomposition and analysis using convex optimization
Author: Anderson, James David
ISNI:       0000 0004 2744 4111
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2012
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
This thesis is concerned with investigating new methods for the analysis of large-scale dynamical systems using convex optimization. The proposed methodology is based on composite Lyapunov theory and is computationally implemented using polynomial programming techniques. The main result of this work is the development of a system decomposition framework that makes it possible to analyze systems that are of such a scale that traditional methods cannot cope with. We begin by addressing the problem of model invalidation. A barrier certificate method for invalidating models in the presence of uncertain data is presented for both continuous and discrete time models. It is shown how a re-parameterization of the time dependent variables can improve the numerical conditioning of the underlying optimization problem. The main contribution of this thesis is the development of an automated dynamical system decomposition framework that permits us to verify the stability of systems that typically have a state dimension large enough to render traditional computational methods intractable. The underlying idea is to decompose a system into a set of lower order subsystems connected in feedback in such a manner that composite methods for stability verification may be employed. What is unique about the algorithm presented is that it takes into account both dynamics and the topology of the interconnection graph. In the first instance we illustrate the methodology with an ecological network and primal Internet congestion control scheme. The versatility of the decomposition framework is also highlighted when it is shown that when applied to a model of the EGF-MAPK signaling pathway it is capable of identifying biologically relevant subsystems in addition to stability verification. Finally we introduce stability metrics for interconnected dynamical systems based on the theory of dissipativity. We conclude by outlining a clustering based decomposition algorithm that explicitly takes into account the input and output dynamics when determining the system decomposition.
Supervisor: Papachristodoulou, Antonis Sponsor: Engineering and Physical Sciences Research Council
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Control engineering ; Mathematical modeling (engineering) ; Calculus of variations and optimal control ; Mathematical biology ; Convex optimization ; Dynamical systems