Use this URL to cite or link to this record in EThOS:
Title: Simulations and modelling of bacterial flagellar propulsion
Author: Shum, Henry
ISNI:       0000 0004 2743 9515
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2011
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Motility of flagellated bacteria has been a topic of increasing scientific interest over the past decades, attracting the attention of mathematicians, physicists, biologists and engineers alike. Bacteria and other micro-organisms cause substantial damage through biofilm growth on submerged interfaces in water cooling systems, ship hulls and medical implants. This gives social and economic motivations for learning about how micro-organisms swim and behave in different environments. Fluid flows on such small scales are dominated by viscosity and therefore behave differently from the inertia-dominated flows that we are more familiar with, making bacterial motility a physically intriguing phenomenon to study as well. We use the boundary element method (BEM) to simulate the motion of singly flagellated bacteria in a viscous, Newtonian fluid. One of our main objectives is to investigate the influence of external surfaces on swimming behaviour. We show that the precise shape of the cell body and flagellum can be important for determining boundary behaviour, in particular, whether bacteria are attracted or repelled from surfaces. Furthermore, we investigate the types of motion that may arise between two parallel plates and in rectangular channels of fluid and show how these relate to the plane boundary interactions. As an extension to original models of flagellar propulsion in bacteria that assume a rotation of the rigid helical flagellum about an axis fixed relative to the cell body, we consider flexibility of the bacterial hook connecting the aforementioned parts of the swimmer. This is motivated by evidence that the hook is much more flexible than the rest of the flagellum, which we therefore treat as a rigid structure. Elastic dynamics of the hook are modelled using the equations for a Kirchhoff rod. In some regimes, the dynamics are well described by a rigid hook model but we find the possibility of additional modes of behaviour.
Supervisor: Gaffney, Eamonn A. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Fluid mechanics (mathematics) ; Mathematical biology ; Biophysics ; Flagellar propulsion ; Microfluidics ; Bacterial locomotion ; Boundary element method