Use this URL to cite or link to this record in EThOS:
Title: The North Helvetic Flysch of eastern Switzerland : Foreland Basin architecture and modelling
Author: Sinclair, Hugh D.
ISNI:       0000 0004 2743 2081
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 1989
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
The North Alpine Foreland Basin (NAFB) comprises sediments of late Eocene to middle Miocene age. The earliest deposits are the North Helvetic Flysch which are exposed in the regions of Glarus and Graubunden, eastern Switzerland. The Taveyannaz sandstones are the first thrust wedge (southerly) derived sediments of the North Helvetic Flysch. The Taveyannaz basin was divided into two sub-basins by a thrust ramp palaeohigh running ENE/WSW (parallel to the thrust front). Palaeocurrent directions were trench parallel towards the ENE. Sedimentation in the Inner basin (140m thick) is characterised by very thick bedded turbidite sands generated by thrust induced seismic events confined within the thrust-top basin. The Outer basin (240m min. thickness) comprises 10-15 sand packages (5-100m thick) formed by turbidite sands which are commonly amalgamated. Sedimentation in the Outer basin is considered to have been controlled by thrust-induced relative sea-level variations. The Inner basin underwent intense deformation at the sediment/water interface prior to the emplacement of a mud sheet over the basin whilst the sediments were partially lithified. Later tectonic deformation involved fold and thrust structures detaching in the underlying Globigerina marls. The stratigraphy of the NAFB can be considered as two shallowing upward megasequences separated by the base Burdigalian unconformity. This stratigraphy can be simulated by computer by simplifying the foreland basin/thrust wedge system into 4 parameters: 1) the effective elastic thickness of the foreland plate, 2) a transport coefficient to describe the erosion, transport and deposition of sediment, 3) the surface slope angle of the thrust wedge, 4) the thrust wedge advance rate. The Alpine thrust wedge underwent thickening during the underplating of the External Massifs at about 24-18Ma. This event is simulated numerically by slowing the thrust wedge advance rate, and increasing the slope angle and keeping all other parameters constant. This event causes rejuvenation of the forebulge, and erosion of the underlying stratigraphy, so simulating the base Burdigalian unconformity without recourse to eustasy or anelastic rheologies to the foreland plate.
Supervisor: Watts, Anthony Brian; Platt, John Isaac Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Sediments (Geology) ; Sedimentation and deposition ; Basins (Geology) ; Geology ; Stratigraphic ; Switzerland