Use this URL to cite or link to this record in EThOS:
Title: X-ray crystallographic studies of glycogen phosphorylase b
Author: Wild, David Leslie
ISNI:       0000 0004 2742 8859
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 1981
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
The structure of rabbit muscle glycogen phosphorylase b, an important regulatory enzyme in glycogen metabolism, has been studied by X-ray crystallographic techniques. This work was carried out as part of a group project, and the crystal structure of the enzyme had already been solved to 3 Å resolution, using the technique of Multiple Isomorphous Replacement. A search for additional heavy atom isomorphous derivatives was carried out, and photographic data to 3 Å resolution were collected for a further ethylmercurythiosalicylate derivative, using a screenless oscillation camera. The collection and reduction of this data, and the refinement of the heavy atom positions is described. The inclusion of this data allowed a new electron density map (with figure of merit = O.63) to be calculated, which enabled previously ambiguous areas in the electron density to be interpreted. Data to 2 Å resolution have been collected on an oscillation camera, using a synchrotron radiation source and cylindrical film cassettes. An intensity gain of up to 13O times, compared to a GX6 rotating anode source, was obtained with the synchrotron radiation source. A reduction in radiation damage, was also observed. The collection and reduction of the 2 Å data is described. The final overall merging R-factor was 15%. Some systematic errors remain in the data, and possible sources of these errors are discussed, and improvements to the data processing procedure suggested. The 2 Å data were empirically scaled to the 3 Å data and have been used in the first stages of the refinement of the phosphorylase b structure. The contribution of the crystallographic results towards an understanding of phosphorylase b as an allosteric protein is discussed.
Supervisor: Wilson, Keith Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Glycogen phosphorylase ; Structure ; Crystallography ; X-ray crystallography ; Phosphorylation