Use this URL to cite or link to this record in EThOS:
Title: Cross-spectral face recognition between near-infrared and visible light modalities
Author: Goswami, D.
ISNI:       0000 0004 2741 2953
Awarding Body: University of Surrey
Current Institution: University of Surrey
Date of Award: 2012
Availability of Full Text:
Access from EThOS:
Access from Institution:
In this thesis, improvement of face recognition performance with the use of images from the visible (VIS) and near-infrared (NIR) spectrum is attempted. Face recognition systems can be adversely affected by scenarios which encounter a significant amount of illumination variation across images of the same subject. Cross-spectral face recognition systems using images collected across the VIS and NIR spectrum can counter the ill-effects of illumination variation by standardising both sets of images. A novel preprocessing technique is proposed, which attempts the transformation of faces across both modalities to a feature space with enhanced correlation. Direct matching across the modalities is not possible due to the inherent spectral differences between NIR and VIS face images. Compared to a VIS light source, NIR radiation has a greater penetrative depth when incident on human skin. This fact, in addition to the greater number of scattering interactions within the skin by rays from the NIR spectrum can alter the morphology of the human face enough to disable a direct match with the corresponding VIS face. Several ways to bridge the gap between NIR-VIS faces have been proposed previously. Mostly of a data-driven approach, these techniques include standardised photometric normalisation techniques and subspace projections. A generative approach driven by a true physical model has not been investigated till now. In this thesis, it is proposed that a large proportion of the scattering interactions present in the NIR spectrum can be accounted for using a model for subsurface scattering. A novel subsurface scattering inversion (SSI) algorithm is developed that implements an inversion approach based on translucent surface rendering by the computer graphics field, whereby the reversal of the first order effects of subsurface scattering is attempted. The SSI algorithm is then evaluated against several preprocessing techniques, and using various permutations of feature extraction and subspace projection algorithms. The results of this evaluation show an improvement in cross spectral face recognition performance using SSI over existing Retinex-based approaches. The top performing combination of an existing photometric normalisation technique, Sequential Chain, is seen to be the best performing with a Rank 1 recognition rate of 92. 5%. In addition, the improvement in performance using non-linear projection models shows an element of non-linearity exists in the relationship between NIR and VIS.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available