Use this URL to cite or link to this record in EThOS:
Title: Enhancing decision support systems for airport ground movement
Author: Ravizza, Stefan
ISNI:       0000 0004 2745 8986
Awarding Body: University of Nottingham
Current Institution: University of Nottingham
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Access from Institution:
With the expected continued increases in air transportation, the mitigation of the consequent delays and environmental effects is becoming more and more important, requiring increasingly sophisticated approaches for airside airport operations. The ground movement problem forms the link between other airside problems at an airport, such as arrival sequencing, departure sequencing, gate/stand allocation and stand holding. The purpose of this thesis is to contribute to airport ground movement research through obtaining a better understanding of the problem and producing new models and algorithms for three sub-problems. Firstly, many stakeholders at an airport can benefit from more accurate taxi time predictions. This thesis focuses upon this aim by analysing the important factors affecting taxi times for arrivals and departures and by comparing different regression models to analyse which one performs the best for this particular task. It was found that incorporating the information of the airport layout could significantly improve the accuracy and that a TSK fuzzy rule-based system outperformed other approaches. Secondly, a fast and flexible decision support system is introduced which can help ground controllers in an airport tower to make better routing and scheduling decisions and can also absorb as much of the waiting time as possible for departures at the gate/stand, to reduce the fuel burn and environmental impact. The results show potential maximum savings in total taxi time of about 30.3%, compared to the actual performance at the airport. Thirdly, a new research direction is explored which analyses the trade-off between taxi time and fuel consumption during taxiing. A sophisticated new model is presented to make such an analysis possible. Furthermore, this research provides the basis for integrating the ground movement problem with other airport operations. Datasets from Zurich Airport, Stockholm-Arlanda Airport, London Heathrow Airport and Hartsfield-Jackson Atlanta International Airport were utilised to test these sub-problems.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: TL Motor vehicles. Aeronautics. Astronautics