Use this URL to cite or link to this record in EThOS:
Title: Implementation methodology for using concurrent and collaborative approaches for theorem provers, with case studies of SAT and LCF style provers
Author: G, Sriipriya
ISNI:       0000 0004 2747 0213
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Theorem provers are faced with the challenges of size and complexity, fueled by the increasing range of applications. The use of concurrent/ distributed programming paradigms to engineer better theorem provers merits serious investigation, as it provides: more processing power and opportunities for implementing novel approaches to address theorem proving tasks hitherto infeasible in a sequential setting. Investigation of these opportunities for two diverse theorem prover settings with an emphasis on desirable implementation criteria is the core focus of this thesis. Concurrent programming is notoriously error prone, hard to debug and evaluate. Thus, implementation approaches which promote easy prototyping, portability, incremental development and effective isolation of design and implementation can greatly aid the enterprise of experimentation with the application of concurrent techniques to address specific theorem proving tasks. In this thesis, we have explored one such approach by using Alice ML, a functional programming language with support for concurrency and distribution, to implement the prototypes and have used programming abstractions to encapsulate the implementations of the concurrent techniques used. The utility of this approach is illustrated via proof-of-concept prototypes of concurrent systems for two diverse case studies of theorem proving: the propositional satisfiability problem (SAT) and LCF style (first-order) theorem proving, addressing some previously unexplored parallelisation opportunities for each, as follows:. SAT: We have developed a novel hybrid approach for SAT and implemented a prototype for the same: DPLL-Stalmarck. It uses two complementary algorithms for SAT, DPLL and Stalmarck’s. The two solvers run asynchronously and dynamic information exchange is used for co-operative solving. Interaction of the solvers has been encapsulated as a programming abstraction. Compared to the standalone DPLL solver, DPLL-Stalmarck shows significant performance gains for two of the three problem classes considered and comparable behaviour otherwise. As an exploratory research effort, we have developed a novel algorithm, Concurrent Stalmarck, by applying concurrent techniques to the Stalmarck algorithm. A proof-of-concept prototype for the same has been implemented. Implementation of the saturation technique of the Stalmarck algorithm in a parallel setting, as implemented in Concurrent Stalmarck, has been encapsulated as a programming abstraction. LCF: Provision of programmable concurrent primitives enables customisation of concurrent techniques to specific theorem proving scenarios. In this case study, we have developed a multilayered approach to support programmable, sound extensions for an LCF prover: use programming abstractions to implement the concurrent techniques; use these to develop novel tacticals (control structures to apply tactics), incorporating concurrent techniques; and use these to develop novel proof search procedures. This approach has been implemented in a prototypical LCF style first-order prover, using Alice ML. New tacticals developed are: fastest-first; distributed composition; crossTalk: a novel tactic which uses dynamic, collaborative information exchange to handle unification across multiple sub-goals, with shared meta-variables; a new tactic, performing simultaneous proof-refutation attempts on propositional (sub- )goals, by invoking an external SAT solver (SAT case study), as a counter-example finder. Examples of concrete theorem proving scenarios are provided, demonstrating the utility of these extensions. Synthesis of a variety of automatic proof search procedures has been demonstrated, illustrating the scope of programmability and customisation, enabled by our multilayered approach.
Supervisor: Gopalan, Sriipriya; Bundy, Alan; Steel, Graham; Smaill, Alan Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: parallelisation ; theorem provers ; parallel theorem provers ; LCF ; SAT ; functional ; abstractions