Use this URL to cite or link to this record in EThOS:
Title: Femtosecond laser studies of fullerenes and nanotubes
Author: Henderson, Gordon George
ISNI:       0000 0004 2746 6759
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
This work concerns the interaction of intense, ultrashort laser pulses with fullerenes and carbon nanotubes. This includes the excitation and ionisation dynamics of gas phase fullerenes and the response of carbon nanotubes to intense ultrashort laser pulses. When ionising C60 with laser pulses of duration between 50 fs up to a few hundred fs, the ionisation mechanism has been proposed to be thermal in nature, with the electronic subsystem ‘hot’ and the vibrational system ‘cold’ at the time of ionisation. Recent results show an anisotropy in the photoelectron angular distribution which may suggest more direct mechanisms at work. Velocity-Map Imaging photoelectron spectroscopy results are presented for the ionisation of C60 and C70 at various wavelengths, pulse durations and intensities and the results are compared to theoretical models. The results are described well by a thermal ionisation mechanism in which a significant number of electrons are emitted during the laser pulse. Electrons may gain a momentum ‘kick’ from the electric field of the laser which results in an anisotropy in the photoelectron angular distributions. Peaks are observed, superimposed on the thermal background, in the photoelectron kinetic energy spectra of fullerenes ionised by ultrashort laser pulses which were previously assigned as Rydberg peaks. Photoelectron angular distributions of these peaks are presented for C60 and C70 ionised with laser pulses of various wavelengths. The binding energies and anisotropy parameters fitted to the peaks suggest that they are due to the population and one-photon ionisation of superatom molecular orbitals (SAMOs). The results rule out a direct multiphoton population mechanism for these states and show many similarities with Rydberg fingerprint spectroscopy. The fusion of carbon nanotubes has been observed under high energy electron beams and fullerene molecules have been shown to fuse together after irradiation with ultrashort laser pulses. Results are presented for experiments where fusion of carbon nanotubes with ultrashort laser pulses was attempted. Thin carbon nanotube films are analysed via Raman spectroscopy after irradiation by single laser pulses. A number of low frequency radial breathing mode peaks were observed which suggest that fusion may have taken place at certain areas of the sample.
Supervisor: Campbell, Eleanor; Alexander, Andrew Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: laser pulses ; fullerenes ; carbon nanotubes