Use this URL to cite or link to this record in EThOS:
Title: Measurement of the CP-violating phase φs in the decay Bo/s →J/ψ/φ
Author: Fitzpatrick, Conor Thomas
ISNI:       0000 0004 2745 9583
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2012
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
The LHCb experiment is dedicated to making precision measurements involving beauty and charm hadrons at the CERN Large Hadron Collider. The LHCb RICH detectors provide charged particle identification required to distinguish final states in many decays important to the LHCb physics programme. Time alignment of the RICH photon detectors is necessary in order to ensure a high photon collection efficiency. Using both a pulsed laser and proton-proton collision data the photon detectors are aligned to within 1 ns. The LHCb detector is uniquely positioned to measure production cross-sections at energies and rapidities inaccessible to other experiments. With 1.81 nb−1 of proton-proton collisions collected by the LHCb experiment in 2010 at center-of-mass energy √s = 7 TeV the production crosssection of D±s and D± mesons decaying to the φ{K+K−}π ± final state have been determined in bins of transverse momentum and rapidity. These measurements use a data-driven recursive optimisation technique to improve signal significance. The cross-section ratio is measured to be σ(D± ) σ(D± s ) = 2.32±0.27(stat)±0.26(syst), consistent with the ratio of charm-quark hadronisation fractions to D± and D±s mesons. Time-dependent interference between mixing of B0s -B0s mesons and decay to the final state J/ψφ gives rise to a CP violating phase φs. This phase is constrained to be small within the Standard Model, a significant deviation from which would be a signal of new physics. φs has been measured with 0.37 fb−1 of protonproton collision data recorded during 2011 by the LHCb experiment. Isolation of the signal distribution is achieved using the S-plot technique, and the analysis accounts for inclusive B0s →J/ψK+K− s-wave contributions. The measured value of φs = 0.16±0.18(stat)±0.06(syst) rad is the most precise measurement to date, and is consistent with Standard Model predictions.
Supervisor: Muheim, Franz; Playfer, Stephen Sponsor: Science and Technology Facilities Council (STFC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: CERN ; Large Hadron Collider ; LHC ; LHCb ; particle physics ; CP violation