Use this URL to cite or link to this record in EThOS:
Title: Database mining studies on protein-peptide and protein-protein interactions
Author: Stevenson, Calum
ISNI:       0000 0004 2745 7799
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2012
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
A major area of interest is the identification of proteins that play a role in hormone dependent cancers and in collaboration with the MRC Centre for Reproductive Health we studied the gonadotropin releasing hormone receptor (GnRH-R). Other targets described in the thesis are the SH3 domain of PSD-95 and the protein BLyS. In order to identify potential inhibitory small molecules we have used a variety of computational data base mining approaches as well as using and developing experimental binding assays. It has become increasingly challenging to evaluate the most representative drug like small molecule compounds when using traditional high throughput screening methods. This thesis assesses the use of in silico tools to probe key protein-protein and protein-peptide interactions. These tools provide a means to identify enriched compound datasets which can be purchased and tested in vitro in a time and cost efficient way. The transmembrane protein GnRH-R provides an interesting opportunity to identify small molecules that could inhibit the binding of its peptide ligand GnRH. This is a challenging project as there are few examples in the literature of drug-like molecules that bind to such protein-peptide interfaces. The first step involved receptor modelling using solved crystal structures of homologous proteins. The model was then validated by developing structure activity relationships for established high affinity ligands. We also performed crystallographic and biophysical studies on the native GnRH decapeptide. Two other protein-protein systems were also examined using the same virtual screening and experimental ligand binding methodology. SH3 domains play an important role in cell signalling and we used the PSD-95 protein as our target for study as a crystal structure has been published. As well as identifying potential ligands we characterised structural properties of PSD-95 fusion proteins and also developed the basis for compound assay. The third system studied was B Lymphocyte Stimulator (BLyS) which is a target for treatment of a number of autoimmune diseases. This presented an interesting target for study as the protein binds to multiple receptors depending on its multimeric state. BLyS protein was characterised using electron microscopy and other biophysical techniques.
Supervisor: Walkinshaw, Malcolm; Millar, Robert Sponsor: Biotechnology and Biological Sciences Research Council (BBSRC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: virtual screening ; LIDAEUS ; GnRH-R ; PSD95 ; BLyS