Use this URL to cite or link to this record in EThOS:
Title: Evaluation of robotic catheter technology in complex endovascular intervention
Author: Theodoreli-Riga, C. V.
ISNI:       0000 0004 2741 8773
Awarding Body: Imperial College London
Current Institution: Imperial College London
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Access from Institution:
The past four decades have witnessed tremendous strides in the evolution of endovascular devices and techniques. Catheter-based intervention has revolutionized the management of arterial disease allowing treatment of aortic and peripheral pathologies via a minimally invasive approach. Despite the exponential advances in endovascular equipment, devices and techniques, catheter-based endovascular intervention has certain morphological and technological constraints. Complex patient anatomy, technological impediments and suboptimal fluoroscopic imaging, can make endovascular intervention challenging using traditional endovascular means. Conventional endovascular catheters lack active manoeuvrability of the tip. Manual control can hinder overall stability and control at key target areas, leading to significantly prolonged overall procedure and fluoroscopic times. Repeated instrumentation increases the risk of vessel trauma and distal embolization. More importantly, guidewire-catheter skills are not necessarily intuitive but must be developed and are highly dependent on operator skill with long training pathways as a result. Recognizing the pressing need to address some of the limitations of standard catheter technology this thesis aims to evaluate the role of advanced robotic endovascular catheters in the aortic arch and the visceral segment. Clinical use of this technology is currently limited to transvenous cardiac mapping and ablation procedures. A comprehensive pre-clinical comparison and analysis of robotic versus manual catheter techniques is presented to reveal both their advantages and limitations, with particular emphasis on the potential of robotic catheter technology to reduce the manual skill required for complex tasks, improve stability at key target areas, reduce the risk of vessel trauma, embolization and radiation exposure, whilst improving overall operator performance. The worlds first clinical report of robot-assisted aortic aneurysm repair, a “proof - of - concept” resulting from this research, is also presented, and the potential for future advanced applications in order to increase the applicability of endovascular therapy to a larger cohort of patients discussed.
Supervisor: Darzi, Ara ; Cheshire, Nicholas Sponsor: Not available
Qualification Name: Thesis (M.D.) Qualification Level: Doctoral