Use this URL to cite or link to this record in EThOS:
Title: Modelling and quantification of structural uncertainties in petroleum reservoirs assisted by a hybrid Cartesian cut cell/enriched multipoint flux approximation approach
Author: Ahmadi, Mohammad
ISNI:       0000 0004 2742 0996
Awarding Body: Heriot-Watt University
Current Institution: Heriot-Watt University
Date of Award: 2012
Availability of Full Text:
Access from EThOS:
Access from Institution:
Efficient and profitable oil production is subject to make reliable predictions about reservoir performance. However, restricted knowledge about reservoir distributed properties and reservoir structure calls for History Matching in which the reservoir model is calibrated to emulate the field observed history. Such an inverse problem yields multiple history-matched models which might result in different predictions of reservoir performance. Uncertainty Quantification restricts the raised model uncertainties and boosts the model reliability for the forecasts of future reservoir behaviour. Conventional approaches of Uncertainty Quantification ignore large scale uncertainties related to reservoir structure, while structural uncertainties can influence the reservoir forecasts more intensely compared with petrophysical uncertainty. What makes the quantification of structural uncertainty impracticable is the need for global regridding at each step of History Matching process. To resolve this obstacle, we develop an efficient methodology based on Cartesian Cut Cell Method which decouples the model from its representation onto the grid and allows uncertain structures to be varied as a part of History Matching process. Reduced numerical accuracy due to cell degeneracies in the vicinity of geological structures is adequately compensated with an enhanced scheme of class Locally Conservative Flux Continuous Methods (Extended Enriched Multipoint Flux Approximation Method abbreviated to extended EMPFA). The robustness and consistency of proposed Hybrid Cartesian Cut Cell/extended EMPFA approach are demonstrated in terms of true representation of geological structures influence on flow behaviour. In this research, the general framework of Uncertainty Quantification is extended and well-equipped by proposed approach to tackle uncertainties of different structures such as reservoir horizons, bedding layers, faults and pinchouts. Significant improvements in the quality of reservoir recovery forecasts and reservoir volume estimation are presented for synthetic models of uncertain structures. Also this thesis provides a comparative study of structural uncertainty influence on reservoir forecasts among various geological structures.
Supervisor: Christie, Mike Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available