Use this URL to cite or link to this record in EThOS:
Title: Crystallisation driven self-assembly of polylactide containing block copolymers synthesised by combination of ROP and RAFT
Author: Petzetakis, Nikolaos
ISNI:       0000 0004 2739 9170
Awarding Body: University of Warwick
Current Institution: University of Warwick
Date of Award: 2012
Availability of Full Text:
Access from EThOS:
Access from Institution:
Chapter 1 is the main introduction of this work and it features the two main concepts of this study. First living polymerisation techniques are introduced with a special focus into RAFT and ROP. Secondly solution self-assembly is briefly discussed. In Chapter 2 we describe the synthesis of an amphiphilic block copolymer where the two blocks are connected through a reversible bond. A Diels-Alder (DA) adduct consisted of a maleimide-furan pair was chosen as the reversible linker. The solution self-assembly of this polymer was studied by TEM and DLS giving rise to the unexpected formation of cylindrical micelles. In Chapter 3 the main objective was to synthesise new amphiphilic block copolymers without the DA motif in order to investigate their self-assembly behaviour compared to those for DA containing polymers obtained in Chapter 2. To further understand this self-assembly behaviour our method has been extended to the synthesis of other hydrophilic blocks and end group modified polymers. In addition, some key properties of the polymers synthesised have been investigated. In Chapter 4 our main goal is to understand the origins of the cylindrical micelle formation seen in Chapter 2. We investigated the aggregation behaviour under the aqueous thermal conditions in which the PTHPA block hydrolysis is performed. Studies at different concentrations and solvent mixtures provide valuable information regarding the self-assembly mechanism. In addition, the polymers with modified end groups and the triblock copolymers synthesised in Chapter 3 are studied and all the results compared. In Chapter 5 we explore the living crystallisation driven self-assembly of PLA-b- PAA block copolymers in aqueous media towards the formation of cylindrical micelles of controlled length. Interestingly, in many of the unstained TEM images presented in this work the particles demonstrate a non-uniform contrast along their width. This unexpected result is fully investigated in Chapter 6.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: QD Chemistry