Use this URL to cite or link to this record in EThOS:
Title: Modelling Emergency Medical Services
Author: Smith, Leanne
ISNI:       0000 0004 2740 7126
Awarding Body: Cardiff University
Current Institution: Cardiff University
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Access from Institution:
Emergency Medical Services (EMS) play a pivotal role in any healthcare organisation. Response and turnaround time targets are always of great concern for the Welsh Ambulance NHS Trust (WAST). In particular, the more rural areas in South East Wales consistently perform poorly with respect to Government set response standards, whilst delayed transfer of care to Emergency Departments (EDs) is a problem publicised extensively in recent years. Many Trusts, including WAST, are additionally moving towards clinical outcome based performance measures, allowing an alternative system-evaluation approach to the traditional response threshold led strategies, resulting in a more patient centred system. Three main investigative parts form this thesis, culminating in a suite of operational and strategic decision support tools to aid EMS managers. Firstly, four novel allocation model methods are developed to provide vehicle allocations to existing stations whilst maximising patient survival. A detailed simulation model then evaluates clinical outcomes given a survival based (compared to response target based) allocation, determining also the impact of the fleet, its location and a variety of system changes of interest to WAST (through ‘what-if?’ style experimentation) on entire system performance. Additionally, a developed travel time matrix generator tool, enabling the calculation and/or prediction of journey times between all pairs of locations from route distances is utilised within the aforementioned models. The conclusions of the experimentation and investigative processes suggest system improvements can in fact come from better allocating vehicles across the region, by reducing turnaround times at hospital facilities and, in application to South East Wales, through alternative operational policies without the need to increase resources. As an example, a comparable degree of improvement in patient survival is witnessed for a simulation scenario where the fleet capacity is increased by 10% in contrast to a scenario in which ideal turnaround times (within the target) occur.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: QA Mathematics ; R Medicine (General)