Use this URL to cite or link to this record in EThOS:
Title: Self-organised task differentiation in homogeneous and heterogeneous groups of autonomous agents
Author: Magg, Sven
ISNI:       0000 0004 2738 5115
Awarding Body: University of Hertfordshire
Current Institution: University of Hertfordshire
Date of Award: 2012
Availability of Full Text:
Access from EThOS:
Access from Institution:
The field of swarm robotics has been growing fast over the last few years. Using a swarm of simple and cheap robots has advantages in various tasks. Apart from performance gains on tasks that allow for parallel execution, simple robots can also be smaller, enabling them to reach areas that can not be accessed by a larger, more complex robot. Their ability to cooperate means they can execute complex tasks while offering self-organised adaptation to changing environments and robustness due to redundancy. In order to keep individual robots simple, a control algorithm has to keep expensive communication to a minimum and has to be able to act on little information to keep the amount of sensors down. The number of sensors and actuators can be reduced even more when necessary capabilities are spread out over different agents that then combine them by cooperating. Self-organised differentiation within these heterogeneous groups has to take the individual abilities of agents into account to improve group performance. In this thesis it is shown that a homogeneous group of versatile agents can not be easily replaced by a heterogeneous group, by separating the abilities of the versatile agents into several specialists. It is shown that no composition of those specialists produces the same outcome as a homogeneous group on a clustering task. In the second part of this work, an adaptation mechanism for a group of foragers introduced by Labella et al. (2004) is analysed in more detail. It does not require communication and needs only the information on individual success or failure. The algorithm leads to self-organised regulation of group activity depending on object availability in the environment by adjusting resting times in a base. A possible variation of this algorithm is introduced which replaces the probabilistic mechanism with which agents determine to leave the base. It is demonstrated that a direct calculation of the resting times does not lead to differences in terms of differentiation and speed of adaptation. After investigating effects of different parameters on the system, it is shown that there is no efficiency increase in static environments with constant object density when using a homogeneous group of agents. Efficiency gains can nevertheless be achieved in dynamic environments. The algorithm was also reported to lead to higher activity of agents which have higher performance. It is shown that this leads to efficiency gains in heterogeneous groups in static and dynamic environments.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: self-organisation ; differentiation ; talk allocation ; adaptive behaviour ; swarm intelligence ; multi-agent-systems ; swarm robotics