Use this URL to cite or link to this record in EThOS:
Title: Biochemical and functional characterisation of phospholipase C-η2
Author: Popovics, Petra
ISNI:       0000 0004 2734 3011
Awarding Body: University of St Andrews
Current Institution: University of St Andrews
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Access from Institution:
Phospholipase C enzymes are important cell signalling enzymes that catalyse the cleavage of phosphatidylinositol 4,5-bisphophate PI(4,5)P₂ into two biologically active second messenger molecules. These are the inositol 1,4,5-trisphosphate which initiates Ca²⁺ release from the endoplasmic reticulum and the diacylglycerol that activates protein kinase C. Although this basic function is shared between the different isoforms, the PLC family encompasses a diverse collection of proteins with various domain structures in addition to the PLC-specific domains. The neuron-specific “6th family” of these enzymes, PLCηs have most recently been identified with two members, PLCη1 and PLCη2. The aim of the thesis is to characterise the PLCη2 variant from several aspects. Firstly, it describes that PLCη2 possesses a high sensitivity towards Ca²⁺. Secondly, it investigates how the Ca²⁺-induced enzymatic activity of PLCη2 is controlled by its different domains. Also it provides evidence that the pleckstrin homology domain targets PLCη2 to membranes by recognising PI(3,4,5)P₃. Moreover, the uniquely structured EF-hand is responsible for the Ca²⁺-sensitivity of the enzyme. Finally, it is demonstrated that the C2 domain is important for activity. The initial biochemical characterisation is followed by the description of a physiological role for PLCη2. It is shown using a neuroblast model that PLCη2 is crucial for neuronal differentiation and neurite growth. Further efforts were made to assess how PLCη2 is responsible for this effect. It was revealed that it might be involved in regulating intracellular Ca²⁺ dynamics, transcriptional activity and actin reorganisation in differentiating neurons. As the functions of PLCη2 are just beginning to come to light, more aspects for future research are also suggested in the thesis. Hopefully, this and the data presented within the thesis will stimulate even greater interest in this fascinating new field of research.
Supervisor: Stewart, Alan J. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Phospholipase C ; Neuronal differentiation ; Calcium signaling ; EF-hand ; QP609.555P7 ; Phospholipase C ; Neural stem cells--Differentiation ; Cellular signal transduction ; Calcium channels