Use this URL to cite or link to this record in EThOS:
Title: Twin screw extrusion pre-treatment of wheat straw for biofuel and lignin biorefinery applications
Author: Ng, Thian Hong
ISNI:       0000 0004 2733 9901
Awarding Body: Brunel University
Current Institution: Brunel University
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Access from Institution:
Pre-treatment of wheat straw(lignocellulosic) biomass is a crucial step as it has direct impact on the subsequent yield of enzymatic saccharification and alcohol fermentation processes in the production of biofuel. Twin screw extrusion is a highly feasible pretreatment method and has been received great interest in the recent year pre-treatment studies. Twin screw extrusion is a continuous process, where the biomass feedstock can be subjected to a combination of simultaneous physical, thermal and chemical treatments. Steam explosion is a batch process and is the most commonly used method for lignocellulosic pre-treatment. In the initial stage of this study, the yield of glucose obtained from enzymatic saccharification for both methods (extrusion and steam explosion) were compared to identify the most effective pre-treatment approach. Effectiveness of the conventional steam explosion pre-treatment was used as benchmark for the directions of development of effective extrusion fractionation for wheat straw. In subsequent study, the impact of physical operating parameters (moisture, barrel temperature, compaction, screw speed and size reduction before extrusion) over twin screw extrusion with and without NaOH were studied. Low temperature (50°C) and increased moisture extrusion were preferred extrusion conditions. Yield of glucose can be improved by addition of NaOH (0.04g / g straw) and barrel temperature profile optimisation. Post extrusion washing was recommended. Findings from FTIR and TGA help to understand the chemical and structural changes took place in the pre-treatment and can be correlated with the glucose yield at the end of enzymatic hydrolysis. Characterisation analysis was extended to FT-NIR, morphology, crystallinity and specific surface area analysis to analyse the structural changes of lignocellulose biomass in extrusion pre-treatment and correlation with glucose yield. Chemometric analysis was used to statistically process large amounts of spectral data. The PCA scores plots showed good cluster segregation of the samples and were thus able to distinguish the effects of different pre-treatment conditions. The PLS regression models for both FTIR and FT-NIR showed good statistical regression and predictive ability correlated to the glucose yield. For the lignin ultilisation study, crude lignin was recovered from black liquor and fractionated with solvents. Lignin and the fractions were characterised with solvent solubility, SEC, UV, FTIR, 1H and 13C NMR and evaluated for the antioxidant activity with AAI ranged from 0.3 to 2.4. Reason for the low performance was proposed and experiment was extended to the intended application performance screening. Lignin application study was further extended to assess the feasibility of using lignin as an antioxidant in carboxylated acrilonitrile-butadiene rubber, XNBR glove. Evaluation involved physical observation, mechanical properties and thermal analysis – DSC-OIT after incorporation of lignin into XNBR glove. Lignin antioxidant performance was compared with current chemical antioxidant in used in industry. A part from antioxidant behaviour, lignin was also found can enhance the softness of XNBR film after accelerated heat aging.
Supervisor: Song, J.; Taverdi, K. Sponsor: Ministry of Science, Technology and Innovation, Malaysia
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Pre-treatment ; Extrusion ; Wheat straw ; Biofuel ; Lignin