Use this URL to cite or link to this record in EThOS:
Title: Dissolution dynamics of liquid/liquid binary mixtures in porous media
Author: Stevar, M. S. P.
ISNI:       0000 0004 2739 0491
Awarding Body: University of Southampton
Current Institution: University of Southampton
Date of Award: 2013
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
In this project has been undertaken an experimental study aimed at understanding the dissolution dynamics of binary mixtures within porous media. The porous medium can be roughly represented as a network of capillary tubes. This allowed for the initial research to be focused on understanding the dissolution dynamics of binary mixtures (i.e. glycerol/water, soybean oil/hexane, and isobutyric acid/water) within single capillary tubes. Further, the dissolution process was investigated within a 2D micromodel built as a network of capillary tubes. In the experiments with the capillary tubes, the dissolution (i.e. the interfacial mass transfer) could be isolated from the hydrodynamic motion while using glycerol/water and soybean oil/hexane binary mixtures. Despite the fact that these are fully miscible liquids, the interface could be observed for rather long time periods. In particular, two phase boundaries were observed moving from the ends into the middle section of the capillary tube with the speeds v∼D^1/3t^-2/3d^2(D, t and d are the coefficient of diffusion, time and diameter of the capillary tube, respectively). The boundaries slowly smeared but their smearing occurred very slow in comparison to their motion. The motion of the phase boundaries cannot be explained by the dependency of the diffusion coefficient on concentration, and could possibly be explained by the effect of barodiffusion. In addition, these solute/solvent boundaries were endowed with non-zero interfacial tension. This experimental study also revealed that the solvent penetration into the micromodel is diffusion-dominated for completely miscible binary mixtures. This is however non-Fickian diffusion with the dissolution rate dV/dt∼D^1/3t^-0.4 for almost the entire duration of the experiment (V is the volume occupied by the solvent, D is the diffusion coefficient and t is time). For the IBA/water mixture the experiments performed at undercritical temperatures revealed that the diffusive mass transport was negligible despite the mixture being out of its thermodynamic equilibrium. Despite a seeming simplicity of the experiments, to the author’s best knowledge, there is no theory that could correctly describe the observed diffusional penetration of a solvent into a solute-filled capillary tube and hence, into a more complex porous volume.
Supervisor: Vorobev, Anatoliy Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: TA Engineering (General). Civil engineering (General)