Use this URL to cite or link to this record in EThOS:
Title: Synergism between N-heterocyclic carbene and phosphorus-based ligands in ruthenium and palladium catalytic systems
Author: Schmid, Thibault E.
ISNI:       0000 0004 2732 8356
Awarding Body: University of St Andrews
Current Institution: University of St Andrews
Date of Award: 2012
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Restricted access.
Access from Institution:
N-heterocyclic carbenes (NHCs) have become a very popular class of ligands, which has found uses in numerous catalytic applications. The use of such compounds in combination with phosphorus-based ligands within metal complexes has enabled the design of very active yet robust catalytic systems. The following chapters will describe the design of novel well-defined palladium- and ruthenium-based pre-catalysts featuring a NHC and a phosphorus-based ligand, referred at as mixed ligand systems. Such species were employed in catalysis where their properties appeared highly beneficial, uses at low catalysts loading and under harsh conditions were then envisioned. The preparation of a series of well-defined palladium mixed NHC/phosphine species is presented in chapter 2. Their catalytic activity in the aqueous Suzuki-Miyaura reaction of aryl chlorides and boronic acids, using low catalyst loadings, is described. The observation of catalytic activity of the latter systems in the hydration of nitriles prompted us to further investigate this reactivity. This reaction appeared to be operative in the absence of palladium species and could be performed under base-catalysed conditions, which was studied in detail and depicted in chapter 3. The combination of a NHC and a phosphite ligand in ruthenium olefin metathesis pre-catalysts has been underexplored. Preliminary results showed that such species could be readily prepared and presented an unusual geometry and a high catalytic activity. Variations in phosphite-containing ruthenium olefin metathesis pre-catalysts are presented. Chapter 4 describes the investigation of various Schrock carbene moieties in such architectures, as well as their implications in structure and catalysis. Chapter 5 depicts attempts to design olefin metathesis Z-selective pre-catalysts by inserting a chelating NHC moiety within phosphite-containing ruthenium species. This dissertation concludes on the potential of such mixed species in catalysis, and armed with the new knowledge provided by this work, proposes potential developments of such chemistry in the design of always more robust and active catalytic systems.
Supervisor: Cazin, Catherine S. J. Sponsor: EPSRC ; EuMet ; Royal Society
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: N-heterocyclic carbenes ; NHC ; Phosphorus-based ligands ; Catalysis ; Ruthenium ; Palladium ; Synergism ; Mixed ligands systems ; QD474.S6 ; Ligands ; Carbenes (Methylene compounds) ; Phosphorus compounds ; Ruthenium compounds ; Palladium catalysts ; Catalysis