Use this URL to cite or link to this record in EThOS:
Title: The use of inertial measurement units for the determination of gait spatio-temporal parameters
Author: Esser, Patrick
ISNI:       0000 0004 2729 9831
Awarding Body: Oxford Brookes University
Current Institution: Oxford Brookes University
Date of Award: 2011
Availability of Full Text:
Access from EThOS:
Access from Institution:
The aim of this work was to develop a methodology whereby inertial measurement units (IMUs) could be used to obtain accurate and objective gait parameters within typical developed adults (TDA) and Parkinson’s disease (PD). The thesis comprised four studies, the first establishing the validity of the IMU method when measuring the vertical centre of mass (CoM) acceleration, velocity and position versus an optical motion capture system (OMCS) in TDA. The second study addressed the validity of the IMU and inverted pendulum model measurements within PD and also explored the inter-rater reliability of the measurement. In the third study the optimisation of the inverted pendulum model driven by IMU data was explored when comparing to standardised clinical tests within TDA and PD, and the fourth explored a novel phase plot analysis applied to CoM movement to explore gait in more detail. The validity study showed no significant difference for vertical acceleration and position between IMU and OMCS measurements within TDA. Vertical velocity however did show a significant difference, but the error was still less than 2.5%. ICCs for all three parameters ranged from 0.782 to 0.952, indicating an adequate test-retest reliability. Within PD there was no significant difference found for vertical CoM acceleration, velocity and position. ICCs for all three parameters ranged from 0.77 to 0.982. In addition, the reliability calculations found no difference for step time, stride length and walking speed for people with PD. Inter-rater reliability was found not to be different for the same parameters. The optimisation of the correction factor when using the inverted pendulum model showed no significant difference between TDA and PD. Furthermore the correction factor was found not to be related to walking speed. The fourth and final study found that phase plot analysis of variability could be performed on CoM vertical excursion. TDA and PD were shown to have, on average, different characteristics. This thesis demonstrated that CoM motion can be objectively measured within a clinical setting in people with PD by utilizing IMUs. Furthermore, in depth gait variability analysis can be performed by utilizing a phase plot method.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available