Use this URL to cite or link to this record in EThOS:
Title: Doppler compensation algorithms for DSP-based implementation of OFDM underwater acoustic communication systems
Author: Abdelkareem, Ammar Ebdelmelik
ISNI:       0000 0004 2730 9403
Awarding Body: University of Newcastle Upon Tyne
Current Institution: University of Newcastle upon Tyne
Date of Award: 2012
Availability of Full Text:
Access from EThOS:
Access from Institution:
In recent years, orthogonal frequency division multiplexing (OFDM) has gained considerable attention in the development of underwater communication (UWC) systems for civilian and military applications. However, the wideband nature of the communication links necessitate robust algorithms to combat the consequences of severe channel conditions such as frequency selectivity, ambient noise, severe multipath and Doppler Effect due to velocity change between the transmitter and receiver. This velocity perturbation comprises two scenarios; the first induces constant time scale expansion/compression or zero acceleration during the transmitted packet time, and the second is time varying Doppler-shift. The latter is an increasingly important area in autonomous underwater vehicle (AUV) applications. The aim of this thesis is to design a low complexity OFDM-based receiver structure for underwater communication that tackles the inherent Doppler effect and is applicable for developing real-time systems on a digital signal processor (DSP). The proposed structure presents a paradigm in modem design from previous generations of single carrier receivers employing computationally expensive equalizers. The thesis demonstrates the issues related to designing a practical OFDM system, such as channel coding and peak-to-average power ratio (PAPR). In channel coding, the proposed algorithms employ convolutional bit-interleaved coded modulation with iterative decoding (BICM-ID) to obtain a higher degree of protection against power fading caused by the channel. A novel receiver structure that combines an adaptive Doppler-shift correction and BICM-ID for multi-carrier systems is presented. In addition, the selective mapping (SLM) technique has been utilized for PAPR. Due to their time varying and frequency selective channel nature, the proposed systems are investigated via both laboratory simulations and experiments conducted in the North Sea off the UK’s North East coast. The results of the study show that the proposed systems outperform block-based Doppler-shift compensation and are capable of tracking the Doppler-shift at acceleration up to 1m /s2.
Supervisor: Not available Sponsor: Iraqi Government's Ministry of Higher Education and Scientific Research
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available